
Course on SPIS Numerical core
(or SPIS/NUM, or "the solvers")

J.-F. Roussel, F. Rogier, D. Volpert, ONERA / DESP

½ Object Oriented Programming concepts (OOP)

½ SPIS/NUM architecture:
½ UML diagram (Universal Modelling Language)

½ JavadDoc browsing

½ Eclipse browsing

½ Introduction to Java OO language

½ A Java IDE: Eclipse

½ SPIS/NUM top level objects and examples

Outline

½ An object contains 3 types of members:
• Fields (or data, variables…)

• Constructor(s) (~ initialiser)

• Methods (~ subroutines)

½ It is “self-contained”:
• It is initialised by a constructor (mandatory to build an object)

• Methods act mostly on object own fields (they often have no or few parameters)

½ Example, Electric Field object:
• It contains (fields):

• Field values (a VolumeField in SPIS)

• A Poisson solver (it is self-contained)

they are defined in the constructor: new PoissonSolver(fieldValues, poissonSolver);

• Methods:
• solve() (no parameters needed)

• getPotential()

Object Oriented Programming concepts (OOP) 1/4

½ A distinction must be done between:
• The class ~ a type of object, a model (type in Fortran 90)

• The instance(s): objects following that model (variables of that type Fortran 90)

½ Example:
• The class: a PIC (Particle-In-Cell) Volume Distribution (distribution represented

by Monte-Carlo sampling)

• Several instances possible:
• ions = new PicVolDistrib(ionType, etc.);

• Electrons = new PicVolDistrib(…);

Object Oriented Programming concepts (OOP) 2/4

½ Heritage :
• From a class, other classes can be derived

• They have the parent-class members + others to be defined

• Derived classes can have several interest: enrichment, specialisation

½ Examples:
• ParticleList has all particles similar (same type & weight) RichParticleList has

different particles (involves extra tables for particles types and weights)

 Here the idea is enrichment (more data)

• SurfaceField has two derived types:
• ScalarSurfaceField

• VectorSurfaceField

Here, the idea is rather specialisation than enrichment

OOP concepts: Heritage 3/4

½ In previous examples:

• Instances of parent-class ParticleList can exist
• Instances of SurfaceField cannot exist, what would be the data stored, scalar or vector?

(an object must be initialised with its data in the constructor)

⇒ SurfaceField is an abstract class, it cannot be instantiated, only ScalarSurfaceField or
VectorSurfaceField can have instances (real existing objects)

½ Other example:
• VolumeDistribution class: object representing matter, but not defined enough to create

a real object (cannot be instantiated)

• Only derived classes can be instantiated: a PicVolumeDistribution, an
AnalyticalVolumeDitribution (Maxwell-Boltzmann), or a FluidVolumeDistribution…

• Fortran programmer think: “but why have these sub-classes (or sub-types) derived from
a common parent class?”

• Answer: genericity / polymorphism:
• Parent class defines abstract methods, which must be implemented by its derived classes

• Ex here: move(time), getMoment(order), etc…

• Implementation is very different for PIC or fluid, but results are similar => a plasma can
handle any type of distribution on the same footing whatever its sub-type

OOP concepts: genericity - polymorphism 4/4

Global
Distribution

Global Flux

VolInteraction

PIC Flux

Particle List

Positions
Velocities
Weights
Type
Flag, index

1
1

1
1

Circuit
Connectivity

Integrate()
GetPotential()

Fluid flux
SurfMesh

Geometry

Advance()
CurrentDeposit()

0..n

1

0..n

1

Derives

Circuit Field
Values

Combine()
1..n 11..n 1

VolDistribution
Distribution function
Possibly moments

move()
GetMoment()
Combine()

VolField
Values
centring

GetField()
Combine()

VolMesh
Geometry

PoissonSolve()
Advance()
ChargeDeposit()
Gradient()
Interpolate()

0..n

1

0..n

1

1..n

0..1

1..n

0..1

0..n

0..1

0..n

0..1

1

0..1

1

0..1

Plasma

Integrate()1

1..n
0..n

Simulation

Integrate()

1

1

Spacecraft

DeriveCircuit()
Integrate()
MapSurfToCirc()
MapCircToSurf()

1
1

1
1

1

0..1

1

0..1 1

SurfField
Values
Centring

Combine()
GetField()

0..n

1

0..n

1

Maps

SurfInteraction
Interact()

Surface Distribution
Flux distribution
Possibly moments

GetMoment()
Combine()

1..n

0..1

1..n

0..1

1

1

1

1

1

1..n
0..n

Fluid
Distribution

1..n1..n

KineticPIC
Distribution

1 11 1

½ Start with SpisNum\doc\index.html

½ Ex 1: SurfField

½ Ex 2: EField

½ Ex 3: PartList

½ Ex 4: VolDistrib

½ …

JavaDoc browsing through SpisNum

½ OO language:

• Really Object Oriented language, neater than C++

• Multiple heritage of C++ replaced interfaces

½ Efficiency:
• At execution: between 1 and 2 times slower than Fortran or C++

• At development, much faster than C++ (debugging much more efficient)

½ A few characteristics:
• Garbage collector (no need to de-allocate)

• Javadoc: very powerful html documentation generation

• Compilation Just-In-Time (pre-compilation possible)

• Variables passed by reference

• Conventions:
• Upper/lower case usage: MyClass myInstance

• private fields, public methods (OOP, not specific to java) => the way the class is coded
can be modified provided the public interface is unchanged (the API (Application
Program Interface) : the methods and their arguments)

• Documentation (language + library API) - download: http://java.sun.com

Java language in brief

½ Java Integrated Development Environment (IDE):
• Source editing

• GUI debugging

• Syntax correction

• Automatic completion

• Hyper-text navigation

• “Javadoc compatible”

½ Assets:
• Increased development efficiency

• Efficiency gain to enter in an unknown code even larger (SPIS)

• Very good quality product (few bugs, stability)

½ Eclipse project:
• Open source, community development

• Now IBM is the major contributor (remains free open source)

Eclipse: a wonderful java IDE

Classical in Fortran

One step beyond

½ Examples demonstrating the concepts

½ Review of top level objects

½ Running the examples: watching objects at work in Eclipse

½ Writing code in Eclipse (tomorrow ?)

SPIS/NUM top level objects and examples

