

Cross-Scale: multi-scale coupling in space plasmas

S. Schwartz, C. P. Escoubet and the Cross-Scale Science Study Team

Cross-Scale Science

3 universal phenomena control plasmas

- Shocks
- Reconnection
- Turbulence

Responsible for

- Particle acceleration
- Energy and momentum exchange
- Transport

in astrophysical and laboratory plasmas

Observational Challenges

- Time-varying
- Fundamentally 3D
- 3 spatial & temporal scales
 - electron
 - ion
 - fluid
- Nonlinearly coupled
- Collisionless \Rightarrow Kinetic
- Plasma ⇔ EM fields
- Can't sample distant astro-plasmas

How does the Solar System Work?

- How do shocks accelerate and heat particles?
 - Acceleration?
 - Energy partition?
 - Variability?

How does the Solar System Work?

- How do shocks accelerate and heat particles?
 - Acceleration?
 - Energy partition?
 - Variability?
- How does reconnection convert magnetic energy?
 - Initiation?
 - Magnetic topology?
 - Particle acceleration?

How does the Solar System Work?

- How do shocks accelerate and heat particles?
 - Acceleration?
 - Energy partition?
 - Variability?
- How does reconnection convert magnetic energy?
 - Initiation?
 - Magnetic topology?
 - Particle acceleration?
- How does turbulence control transport in plasmas?
 - Energy cascade?
 - Anisotropies?
 - Coherent structures?

Mission requirements

- Key Concepts
 - \langle Behaviour \rangle ≠ Behaviour of $\langle \rangle$
 - Simultaneous multi-scale
 - Near-Earth: unique in situ plasma laboratory
- Mission Design
 - Electron Scale: Comprehensive payload
 - Ion Scale: Targeted payload
 - Fluid Scale: Context payload
 - Focus: coupling between scales

10 km; 10 ms 500 km; 1-5 s 5000 km; 30 s

Mission requirements

- Key Concepts
 - $\langle Behaviour \rangle \neq Behaviour of \langle \rangle$
 - Simultaneous multi-scale
 - Near-Earth: unique in situ plasmalaboratory
- Mission Design
 - Electron Scale: Comprehensive payload
 - Ion Scale: Targeted payload
 - Fluid Scale: Context payload
 - Focus: coupling between scales
 - Extensive payload at electron scale: JAXA SCOPE

10 km; 10 ms 500 km; 1-5 s 5000 km; 30 s

- Near-Earth space contains
 - Shocks

- Near-Earth space contains
 - Shocks

- Near-Earth space contains
 - Shocks

- Near-Earth space contains
 - Shocks
 - Reconnection
 - Turbulence
- Orbit: 10x25 Re (14 deg. inclination)
- Launch up to 7 s/c
- Separate SCOPE launch for 2 JAXA + NASA+CSA
- Extendable by other agencies

Possible payload distribution

No	1		2		3			4		5		6		7	
Type of S/C	e1	#	e2	#	e3	#		i1/e4	#	i2	#	i3	#	i4	#
AC magnetometer	ACB	1	ACB	1	ACB	1		ACB	1	ACB	1	ACB	1	ACB	1
Potential control	ASP	1	ASP	1											
Electric field			E2D	4				E2D	4	E2D	4	E2D	4	E2D	4
Electric field	E2Dincl	4			E2Dincl	4									
Plasma sounder	EDEN	1	EDEN	1	EDEN	1		EDEN	1	EDEN	1	EDEN	1	EDEN	1
Electron sensor	EESA	4	EESA	4				EESA	2	EESA	2	EESA	2	EESA	2
Energetic particles								HEP	1			HEP	1		
Ion composition														ICA	1
Ion/electron sensor								IESA	2	IESA	4	IESA	2	IESA	2
DC magnetometer	MAG	1	MAG	1	MAG	1		MAG	1	MAG	1	MAG	1	MAG	1
Wave processor	ACDPU	1	ACDPU	1	ACDPU	1		ACDPU	1	ACDPU	1	ACDPU	1	ACDPU	1
Particle processor	CPP	1	CPP	1				CPP	1	CPP	1	CPP	1	CPP	1

Table 1: Payload composition per S/C in the seven S/C constellation case

Key requirements (feasibility TBC):

- Limitation of payload instrument modes
- > Autonomous instrument operation (also during eclipses, radiation belt, solar flare)
- Speedy initialization/recovery procedures (maximum 1 day)

Alternative configurations

Three tetrahedra (12 spacecraft)

Shared corner (10 spacecraft)

Industry study status

- Two industrial consortiums started study in Jul 08. End in Jun 09
- Trade-off phase finished
- Detailed architecture starting
- Down-selection in Autumn 09 (M-class)