

Modelling of plasma tank and related langmuir probe calibration

MATEO-VELEZ J.-C, <u>ROUSSEL J.-F.</u>, SARRAIL D, BOULAY F., INGUIMBERT V. PAYAN D.

ONERA CNES

return on innovation

Objectives

> Initial:

- Validation of SPIS modelling (LEO type conditions)
- Have a simulation almost ready to simulate our routine experiments (just by changing mock-up, polarisations...)
- Incidental:
 - * Improve LP I-V characteristics interpretation method

The Study

- Ionosphere simulation tank JONAS
 - Experiments achieved in 2002
 - SPIS development 2002-2007 → numerical simulations
- CNES R&T funding

The Experiment

- Plasma I-V characteristics using Langmuir probes (4) plasma density electron temperature
 - plasma potential

• Wake effect using a plate

Fast ions (10-25 eV) emitted from the source can not reach the region behind the plate,
Slow ions created by charge exchange reactions (CEX) are present in the whole tank ≠ LEO

Langmuir probe I-V characteristics interpretation Classical method, method 1 (M1)

Classical handling of ion branch: linear interpolation to plasma potential

• Extra difficulty: separate fast and slow ions => need several probes (simultaneous interpretation)

Guarded planar probes results without the plate (method M1)

• Fast ion density profiles at various distances from the source: 1/d² decay

Slow ion density profiles (noisy)

Guarded planar probes results WITH the plate (method M1)

• No fast ions in the plate wake

• Slow ions in the plate wake

Discussion of LP data interpretation

- > Ion branch linear interpolation to plasma potential:
 - ★ Only an approximation
 - * Quite valid :
 - * fast ions: small influence of potential, and not far from linear
 - * in OML conditions: theory => linear for a sphere
 - * But not really:
 - * in non-OML conditions (larger r / λ_d ratio)
 - ★ fast + slow ions: more complicated
- > Improvements:
 - General idea: use a realistic ion branch model(ling)
 - Other ~ analytical theory when available: Langmuir-Blodgett instead of Langmuir-Mott-Smith (OML): cf. below, in the wake
 - Numerical method, interesting in more complicated situations (SPIS), as e.g. fast + slow ions

Spherical probe in a non-drifting plasma (method M2)

• Application = wake:

slow ions only, far from linear

 In a Maxwellian non-drifting plasma, sheath size S (Langmuir et Blodgett 1924 + Parker 1980) :

DESP - 10th SCTC

Other approach: probe modelling with SPIS (not used here)

- spherical probe 15 mm in diameter
- Maxwellian plasma at rest.
- $N = 1.0 \times 10^{10} \text{m}^{-3}$, Te = Ti = 1 eV
- OML theory valid

- spherical probe 15 mm in diameter
- Maxwellian plasma at rest
- $N = 1.2 \times 10^{11} \text{m}^{-3}$, Te = Ti = 0.09 eV
- Langmuir-Blodget theory valid

JONAS tank numerical modelling (SPIS)

CAD model and mesh using Gmsh

ONERA

DESP – 10th SCTC

Numerical simulations (SPIS Model)

DESP - 10th SCTC

Numerical simulations (SPIS)

9.00	10.0	Fast ion density (m-3) 11.0	12.0	13.0		
					Parameter	Value
					Simulation time	$2.0 \times 10^{-2} \text{ s}$
					Fast ion current	1,1 mA
-		a second second	CONC.		Residual gas pressure	4.3×10^{-4} Pa
-		1			CEX cross section σ	$0.4 \times 10^{-18} \text{ m}^2$
					Tank voltage	-2 V
					Electron temperature	0,09 eV
					Electron density N_0	10 ¹⁴ m ⁻³
		CEX ion density (m-3)				
9.00	10.0	11.0	12.0	13.0		

- Numerical results
 - Fast ion density : 10¹¹-10¹⁴ m⁻³
 - Realistic decrease of ion density (~ 1/r² for fast ions)
 - Wake effect clearly demonstrated for fast ions
 - Important amount of slow ions > 10¹¹ m⁻³, which is in agreement with measurements

Numerical simulations (SPIS)

			and the second			
-2.00	-1.53	Potential (V) -1.07	-0.598	-0.1	31	
		and the second se			Parameter	Value
					Simulation time	$2.0 \times 10^{-2} \text{ s}$
					Fast ion current	1,1 mA
		1			Residual gas pressure	4.3 × 10 ⁻⁴ Pa
		1		3	CEX cross section σ	$0.4 \times 10^{-18} \text{ m}^2$
		-		1	Tank voltage	-2 V
					Electron temperature	0,09 eV
		Continued in the second	and the later	and the second s	Electron density N_0	10^{14} m^{-3}
4 35	Ele	ctron density (m-3)	12		
4.35	0.00	8.80	11.1	13.4		

- Numerical results
 - Electron density and potential : Boltzmann distribution $N_e \propto N_0 \exp((V-V_0)/k_BT)$
 - Quasi neutral plasma

Comparison of simulations to experimental data

Comparison of simulations to experimental data

DESP – 10th SCTC

Much better agreement with M2 method

Conclusions and perspectives

- Validation of the numerical approach for plasma tank modelling
- The final model will help to simulate the experiments to be conducted in the ONERA tank
- Future possible improvements of the approach
 - Using SPIS for generic LP I-V characteristics interpretation
 - Improved tank model: a DSMC for CEX would allow predicting the neutral pressure, and possible inhomogeneities (here taken from measurements)

DESP – 10th SCTC

