

How to measure plasma density?

- Ion spectrometer?
 - Vsc problems at low energy & density
 - Noise integration in low densities
 - Low time resolution
 - Field of view
- Electron spectrometer?
 - Vsc problems at low energies
- Natural waves?
 - Wave identification
 - Existence
- Sounder/impedance?
 - Time resolution
 - Excitation problems

- Langmuir probes?
 - Probe current/probe characteristic at high densities
 - Density from Vsc at low density
 - Also LF wave E-field if two probes
 - High time resolution

Conclusions

- A dual LP instrument is very mass- and powerefficient for Laplace/Tandem/similar missions:
 - N, Te, v in dense plasmas
 - N from Vps in tenuous plasmas
 - LF E-field (10⁻¹ 10⁵ Hz)
 - Dynamics to ms timescale
- Method works well but often relies on empirical calibrations (e.g. density-Vps relation)
 - Increased understanding and better models for data reduction require theoretical and simulation work

IRF

- S/c emits photoelectrons at constant rate...
- ...and collects plasma e- in proportion to density ${\rm n}_{\rm e}$
- Current equilibrium sets V_{sc}, so that...
- n_e = f(V_{sc})
- Vsc best measured by electrostatic probes:
 - From bias voltage sweeps
 - Or from probe-to-s/c potential Vps for an E-field probe (bias current)

IRF

