

Flash-over evaluation on large solar panels - EMAGS3 study -ESA Co. 22771

C. Baur (V. Inguimbert - ONERA) SPINE Meeting Noordwijk 19/03/2013

CONTENT

- 1. Background
- 2. Objectives of EMAGS3 study
- 3. Main tasks
- 4. Main results
- 5. Flash-over simulator
- 6. Summary and Outlook

BACKGROUND

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 3

BACKGROUND

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 4

- 1. Perform tests on a large solar panel to measure FO propagation
 - a. Maximum discharged area
 - b. Velocity
 - c. Effects of different parameters
 - Plasma/Electrons IVG (inverted voltage gradient)
 - Temperature
 - Dielectric capacitance
 - d. Jump over gap
- 2. Proposal of an updated ESD/arcing qualification test setup for solar array coupons

INDUSTRY TEAM

- 1. Prime: ONERA
- 2. Subcontractors:
 - a. Astrium Germany (panel supplier, modification of harness)
 - b. Astrium France
 - c. Thales France
 - d. IABG (Test facility)
- 3. Observer: CNES

TEST SETUP – IABG CHAMBER

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 7

TEST SETUP – IABG CHAMBER

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 8

TEST PLAN IN IABG FACILITY

- 1. IPG (inverted potential gradient) with electron gun
- 2. IPG in plasma
- 3. Effect of low temperatures
 - a. Electron gun
 - b. Plasma
- 4. Effect of capacitance (by adding dielectric foil two different values)
 - a. Electron gun
 - b. Plasma
- Simulation of gap between panels (by adding a 1m² panel at a distance of 10cm)

TEST SETUP – IABG CHAMBER

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 10

ELECTRICAL CIRCUIT DIAGRAM

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 12

DATA ACQUISITION

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 13

DATA ACQUISITION

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 14

step	configuration	Nb ESD	comment
Step 1	Electrons Room temperature	199	12 ESDs have discharged more than 75% of the theoretical stored charge in the coverglasses.
Step 2	Plasma Room temperature	106	12 have discharged more than 75% of the theoretical stored charge including 2 that discharged completely the panel
Step 3	Electrons low temperature (-120°C)	>300	No potential measurement, no camera from time to time Very high rate of ESDs even at low flux and even without irradiation
Step 4	Plasma low temperature (-120°C)	104	No potential measurement
Step 5	Electrons Go back to room temperature	150	Confirmation of first results at low temp (step 3) and at room temp (step 1)

step	configuration	Nb ESD	comment	
Step 6	Electrons	80	Quite good reproducibility	
	Kapton 125 µm		45/80 higher than 250μC	
Step 7	Plasma	25	Quite good reproducibility	
	Kapton 125 µm		14/25 higher than 250µC	
Step 8	Electrons	31	Measurements only on central strings (25 to 29) +	
	Kapton 25 µm		patches 12 and 40 - $Q_{patch} = Q_{FO}/100$	
Step 9	Plasma	33	$Q_{\text{patch}} = Q_{\text{FO}}/100$	
	Kapton 25 µm			
Step 10	Electrons	260	measurement of FO jumping over the gap of 10cm	
	Jump over		5/16 selected are on small panel	
Step 11	Plasma	58	measurement of FO jumping over the gap of 10cm	
	Jump over		4/8 selected are on small panel	
Total			$\sim 1400 \text{ ESDs}$	
			538 stored	
			223 selected in summary file	

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 16

time(s)

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 17

Time (s)

time (s)

MODELLING OF THE RESULTS

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 20

European Space Agency

ESA UNCLASSIFIED – For Official Use

SIMPLIFIED MODEL

- Plasma bubble dynamic
 - Plasma bubble expansion is isotropic
 - Velocity of the bubble is constant
- Current collection by the solar panel in the bubble:
 - The plasma bubble neutralizes instantaneously the dielectric potential
- Electron current extracted from the bubble:
 - Collected by the solar panel
 - Space charge limited and uniform
 - Secondary electron emission is take into account
- Space and time variations of potential due to the current collection
 - Potential varies due to net current collected
 - The conducted current is neglected

PLASMA VELOCITY

ESD number reference: ESD267								
ESD position								
String number (X position):	48	Y position:	0.3m (+/- 0.1m)					
Total charge collected: 0.995 mC								
Initial Potential Profile								
Neutralization source:	Plasma (uniform)	Differential voltage:	500V					
Differential charging								
Panel capacitance:	2.69 μF	Maximum charge of the panel:	1.345 mC					
String capacitance:	51 nF	Maximum charge by strings:	25.5 μC					
	-		-					

 The plasma bubble velocity proportional to the sound velocity of the plasma

$$c_s = \sqrt{\frac{eT_e}{m_i}}$$

- Order magnitude of the bubble velocity for Te from 2 eV to 10 eV:
 - For silicon ions:
 - m_{si} = 4.8×10⁻²⁶ kg
 - 2580 m/s < c_s < 5768 m/s
 - For silver ions:
 - m_{Ag} = 1.8×10⁻²⁵ kg
 - 1341 m/s < c_s < 3000 m/s

EFFECT OF ESD POSITION

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 23

EFFECT OF ESD POSITION

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 24

SUMMARY OF RESULTS

- 1. In principle it is possible to have the whole panel discharged by a flashover
- 2. At low temperatures discharge rate increases (due to conductivity of materials such as adhesives decreases)
- 3. The flash-over can jump over a gap
- The discharge duration is a function of the bubble expansion velocity (depending on the material of the plasma) and depends of course also on the location of the triggering ESD
- Simplified model agrees very well with experimental results and thereby validates the hypothesis of the model

Maximum signals of FO simulated for a potential difference of 500V and 1000V (ESD occurs in the middle of the panel and the FO fully discharges the panel).

Rebuild characteristic signal with RLC circuit.

FO SIMULATOR

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 27

FO SIMULATOR

Initial tests have been performed using the flash-over simulator with the circuit diagram shown here.

More tests on actual coupons equipped with current state-ofthe art solar cell technology would have to be performed.

CONCLUSIONS – NEXT STEPS

- 1. The test on the large panel has not shown any physical limit of the FO expansion
- 2. Tests are now needed to see the effect of the FO
 - a. On solar cells
 - b. On coupons (secondary arcing test)
- 3. A simple FO simulator has been developed and tested
- 4. What happens in flight? probability of a "big" FO? Note: at low temperature, ESD rate was very high (maybe no strong build-up of charge and thus no big FO?)
- 5. Effect of the solar array layout (including blocking diodes, etc.)

For further related information please refer to:

- V. Inguimbert et al., "Flashover measurement on a solar array results of EMAGS3 experimental campaign", Proc. 9th ESPC, 2011
- B. Boulanger et al., "Flashover current and solar array electrical architecture", Proc. 9th ESPC, 2011
- V. Inguimbert et al., "Measurements of the flashover expansion on a real solar panel (EMAGS3 project), Proc. 12th SCTC, 2012
- P. Sarrailh et al., "Plasma Bubble Expansion Model of the Flashover Current Collection on a Solar Array – Comparison to EMAGS3 results", Proc. 12th SCTC, 2012
- B. Boulanger et al., "Flashover current and sustaining arc current, is the flashover current flowing in the sustaining arc?", Proc. 12th SCTC, 2012

THANK YOU FOR YOUR ATTENTION

Carsten Baur Solar Cell Engineer carsten.baur@esa.int

EMAGS3 | C. Baur (V. Inguimbert - ONERA) | SPINE Meeting Noordwijk | 19/03/2013 | Slide 30