EarthCARE SPIS Charging Analysis

Christian Imhof

All the space you need

Outline

- Modelling of the Satellite
- Simulation Settings
- Simulation Results
- Conclusions

Trade off between detailled modelling and hardware / CPU time demands

All the space you need Christian Imhof - 4

All the space you need Christian Imhof - 5

Material Distribution (Eclipse)

Colour	Description	SPIS Material	Node #
Light Green	Platform Radiators	ITO	0 (SC Ground)
Red	Betacloth MLI	Teflon	1
Dark Blue	ATLID Radiators	PSG120	2
Yellow	CPR MLI	Germanium	3
Purple	CPR Radiators	OSR	4
Cyan	SA Structure	PCB-Z	5
Dark Green	SA Cover Glass	CERS / CMG	6

All the space you need Christian Imhof - 6

Material Distribution (Sunlit)

Colour	Description		SPIS Material	Node #
Light Green	Platform Radiators		ITO	0 (SC Ground)
Red	Betacloth MLI		Teflon	1
Dark Blue	ATLID Radiators		PSG120	2
Yellow	CPR MLI		Germanium	3
Purple	CPR Radiators		OSR	4
Cyan	SA Structure		PCB-Z	5
Dark Green	SA Cover Glass		CERS / CMG	6
White	Merged SA	V _{bias} = 0 V Silver		7
Light Gray	Space	V _{bias} = 22.5 V Silver		8
Medium Gray	Exposed	V _{bias} = 45 V Silver		9
Dark Gray	Conductive	V _{bias} = 67.5 V Silver		10
Black	Areas	$V_{\text{bias}} = 90 \text{ V}$	Silver	11

- "New" Material (not originally included in SPIS)
 - Germanium
 - Specific conductivity given as 2,1 S/m
 - \rightarrow using this value led to instabilities of the circuit solver
 - Solved by modelling Germanium as perfect conductor
 - Justification:

 $R = \frac{l}{\sigma \cdot A}$, with $l = 50 \ \mu m$ (thickness of the Germanium layer)

gives 23,8 $\mu\Omega$ * m^2

 \rightarrow U = 2,38 µV for typical LEO current densities of 0,1 A / m²

SEE yield of Ge chosen as 0,8; conservative approach

- SA Cover Glass
 - CERS as in SPIS material database
 - Specific conductivity of 10⁻¹⁵ S/m
 - CMG Glass as specified by Dutch Space
 - Specific conductivity of 2,5*10⁻¹⁶ S/m
 - Influence of this Parameter will be assessed in the worst case simulations (Fontheim with eclipse)

Simulation Setup

393 km sun synchronous orbit with high inclination

- $\rightarrow\,$ passage of the auroral region as driver for worst case plasma environment
- Used Maxwellian Plasma Parameters

Quiet LEO environment

Population	Density in cm ⁻³	Energy in eV
Electrons	10 ⁵	0,2
lons (O ⁺)	10 ⁵	0,1

Auroral Plasma environment; based on SPENVIS Fontheim definition

Population	Density in cm ⁻³	Energy in eV
Electrons 1	809,9	0,2156
Electrons 2	1,482	12940
lons (O ⁺)	811,3	0,2156

Simulation Setup

Global Settings of the simulation

- Electrons modelled with Global Maxwell-Boltzmann Model
- Ions are modelled using the PIC model
- Non linear Poisson solver
- all occuring secondary effects are considered
- secondary particle dynamics and external magnetic field are not considered
- Velocity of the satellite is adressed in order to simulate ram / wake effects
- maximum time step of 100 ms is chosen
 - due to the automatic time step algorithm the average time step was on the order of 30 – 60 ms
- satellite capacitance is set to 1 nF

All the space you need Christian Imhof - 13

Fontheim Environment Sunlit

- Structure potential and averaged surface potentials
 - Satellite ground potential of about -17 V
 - \rightarrow no risk for dangerous IPG
 - Maximum averaged dielectric surface potentials of -270 V

 \rightarrow no risk for ESDs due to normal gradients (threshold 1000 V)

All the space you need

Fontheim Environment Sunlit

- Surface Potentials
 - \rightarrow on MLI side parts locally increased potentials around -800 V
 - \rightarrow potential is still well below the threshold of -1000 V

Fontheim Environment Eclipse

- Structure potential and averaged surface potentials
 - Satellite ground potential drops to -200 V (CMG) / -180 V (CERS)
 - \rightarrow IPG exceeds the threshold; SA cover glass potential \approx 0 V
 - Maximum averaged dielectric surface potentials of -680 V

 \rightarrow no risk for ESDs due to normal gradients

19th SPINE Meeting, ESTEC, 19th March 2013

All the space you need Christian Imhof - 16

Fontheim Environment Eclipse

- Surface Potentials
 - \rightarrow SA cover glass slightly positive -> IPG to structure -> arcing possible
 - \rightarrow on MLI side parts and at the rear increased potentials of up to -1000 V
 - \rightarrow potential differences still below the threshold (-1000 -200 = -800 V)

Fontheim Environment Eclipse

- Ion Wake
 - \rightarrow Plot of the ion density illustrates nicely the wake effect
 - \rightarrow ion density behind the satellite body reduced by 2 orders of magnitude

- Main Drivers of the Potentials and differences to the Sentinel 2 results
 - For Sentinel 2 the structure potential dropped to -240 V vs. -180 V for EC with the same cover glass conductivity
 - > CPR Reflector dish with conductive Ge foil on the ram face of the satellite
 - ITO coated radiators (conductive and high SEE yield)
 - \rightarrow both effects help to limit the negative charging of the structure
 - Ram / Wake effect and striving ion collection
 - \rightarrow influencing the local charging of dielectric surfaces on the satellite
 - SA structure painted with conductive paint for EC

- ESD Risk Assessment
 - Based on simulated potentials and the surface properties the characteristics of the ESD pulse can be calculated⁽¹⁾
 - The IPG on the SA leads to the following inputs / results using $v_{\rm P} = 3 \cdot 10^4$ m/s (velocity of the expanding plasma wave front)^(2,3)

Input Parameters	Value	ESD characteristics	<i>κ</i> = 0,2	<i>κ</i> = 0,3	<i>κ</i> = 0,4
Coating Thickness	100 µm	Half Width of pulse	36,82 µs	36,82 µs	36,82 µs
Relative Permittivity	5,2	Released Charge	45,62 µC	68,43 µC	91,25 µC
Surface Area	3,39 m ²	Released Energy	8,21 mJ	11,63 mJ	14,60 mJ
Simulated Voltage	200 V inverted	Peak Current	1,24 A	1,86 A	2,48 A
Surface Parameters		near sector the encount of the area blown off hut the FOD			
Capacitance	1,14 µF	κ represents the amount of charge blown of by the ESD			
Stored Charge	228 µC	event			

Absolute worst case: Discharge of complete area with high κ

- (1) Spacecraft Plasma Interaction Guidelines and Handbook, D. Rodgers et al, QinetiQ/KI/SPACE/HB042617
- (2) ESDs on Solar Cells—Degradation, Modeling, and Importance of the Test Setup, J.-C. Matéo-Vélez et al, IEEE Transactions on Plasma Science **36**, 2395, 2008
- (3) Electromagnetic Radiation Generated by Arcing in Low Density Plasma, B.V. Vayner et al, NASA Tech. Memorandum 107217

- ESD Risk Assessment
 - Maximum released energy slightly exceeds the threshold given in ECSS for onboard units
 - However:
 - ESD is not occuring on the satellite body but on the SA; no scientific equipment
 - Low peak current of 2,48 A due to rather long duration of \approx 37 µs
 - Energy will be dissipated in the SA / cells
 - Project has initiated a corresponding test by the SA supplier
 - Sentinel 1/2 SA has been tested for peak currents of up to 6 A
 - \rightarrow no problems are expected for EarthCARE SA

Conclusions

- Charging Simulation
 - Worst case auroral charging environment leads to IPG exceeding the ECSS threshold for eclipse conditions
 - ESD analysis performed for criticality assessment (energy, peak current)
 - → Results can be considered as uncritical (peak current of about 2,5 A vs. 6 A tested for Sentinel 1/2 SA)
 - In all other scenarios the potentials on the satellite showed no violation of ECSS thresholds
- SPIS Tool
 - Possibility for the definition of new materials good improvement
 - Nice to have for future: Better parallelization of the simulation process

