

SPIS-MAINTENANCE

SPINE Meeting

ESTEC, Noordwijk, NL, 19th of March 2013

J.-C. Mateo-Velez¹, B. Rivière¹, P. Sarrailh¹, J. Forest², B. Jeanty-Ruard², B. Thiébault²

Context

- CCN 1 to ESA/ESTEC contract 4000102091/10/NL/AS
 - Technical Officer: David Rodgers
 - Partners: ONERA, ARTENUM
- SPIS software is used by an increasing community with increasing needs
 - Training
 - Debugging
 - Extensive validation assessment
 - Verifying their own developments have no unexpected side-effects
- · Objectives of this activity
 - Correct bugs reported by ESA
 - Organize a training course at ESTEC : more than 20 people trained last year
 - Develop a non-regression procedure → this presentation

Non-regression procedure

- Objectives
 - Test parts of the code.
 - Help the developers to verify the non-regression of their contribution.
 - Extend the number of simulation cases achieved by SPIS and provide them to the community
- Comparison with theory or other codes
 - Using Spis 4.3.2
 - Delivery of new cases
 - Update of existing cases
- Outputs
 - Achieved : Technical sheets supplied to European Spatial Agency (ESA) and all the interested developers
 - Under progress: automatic procedure to run cases and check non-regression (spis 5)

Spherical probe

- Studied case: Current collection by a metallic sphere (radius R_p) at a positive potential (Φ) for long and short Debye length(λ_D).
 - Collection of repelled (ions) and attracted species (electrons)^{[4], [5]}:
 - Ion collected current (density n_i, temperature T_i, masse m_i):

$$I_i = I_i(0)exp\left(-\frac{e\phi}{kT_i}\right)$$
 shift by a factor $exp\left(-\frac{e\phi}{kT_i}\right)$.

Electron collected current (density n_e, temperature T_e, masse m

Several theories were published: OML theory in 1926 (R_p/ λ_D < 5).

$$I_e = I_e(0) \left(1 + \frac{e\phi}{kT_e} \right)$$

Laframboise's theory stays the reference. In 1963 he extends the OML theory to broad $R_p/\,\lambda_D$ ratios.

Figure extracted from <u>Theory of spherical and cylindrical Lan</u> probes in a collisionless Maxwellian plasma at rest. [7]

Spherical probe

• Potential sweep scenario (0 to +25*kTe/e) for three probe ratios (Rp/ λ D = 0,5 top left-hand corner, 1 top right-hand corner and 5 bottom center).

- Results close to Laframboise (error < 3%) for high Debye lengths, some difficulties for small Debye lengths
- Even better with SPIS 5 (see tomorrow presentation)

Quasi-infinite cylinder probe

- Simulation launched for R_p / λ_D = 1 and R_p / λ_D = 5.
- Error around 10 %
- but < 1% with next SPIS version.

Floating non-emitting sphere

Studied case: Determination of floating potential for a sphere immersed in plasma.

• OML theory:
$$I_e = I_e(0) \left(1 + \frac{e\phi}{kT_e}\right)$$
 (1)
 $I_i = I_i(0) exp \left(-\frac{e\phi}{kT_e}\right)$ (2) (1) = (2) => Spitzer gives the following value for H⁺ ions:
 $\phi = -2.5kT_e$ ^[5]

SPIS results / OML theory comparison:

- Two cases with large Debye length to apply OML theory.
- Two distributions used: Full PIC distribution (PIC ion PIC electron) and Hybrid distribution (PIC ion -Boltzmann electron).

Emission limited by space charge

Mono dimensional Child-Langmuir configuration

Small patch charging on a spherical body

Comparison with EQUIPOT

- Equipot is a code accessible via html and implemented in SPENVIS
- User has access to:
 - the environment choice
 - the material properties
 - the spacecraft illumination
- Supplied results concern
 - The steady-state potentials
 - The steady-state currents

Small patch charging on a spherical body

Aluminum sphere and kapton patch in quiet GEO enviornment

		Sunlit patch			Shadowed patch		
Observables	Part of S/C	SPIS 4.3.2	Equipot	Differences / Comments	SPIS 4.3.2	Equipot	Differences / Comments
Net Photoelectron current density (A/m²)	Metallic sphere	7.96 E-07	7.94 E-07	0.3 %	8.38 E-07	8.07 E-07	3.8 %
	Dielectric patch	7.55 E-07	9.47E -07	20.2 %	-8.99 E-08	1.05E -21	ok
Net SEE current density (A/m²)	Metallic sphere	4.31 E-07	4.37 E-07	1.4 %	4.11 E-07	4.38 E-07	6.3 %
	Dielectric patch	3.39 E-07	3.09 E-07	9.6 %	1.17 E-06	1.24 E-06	5.9 %

Small patch charging on a spherical body

Gold/Teflon configuration in shadow and charging environment

Observables	Part of S/C	SPIS 4.3.2	Equipot	Differences / Comments
Net SEE current density (A/m ²)	Metallic sphere	5.60 E-06	5.31 E-06	5.5 %
(collected – emitted)	Dielectric patch	1.56 E-06	1.58 E-06	0.9 %
Net total current density (A/m ²)	Metallic sphere	2.69 E-09	-5.00 E-09	$J_{net} = 0$
	Metallic sphere	5.60 E-06	5.31 E-06	5.5 %

Plasma wake

Studied case: Spacecraft to a null potential immersed in a drifting plasma.

Wake structure scheme:

- Interaction between the stationnary spacecraft and the drifting plasma.
- In front of the plasma flow, ion collection improved.
- Downstream of satellite, void or rarefaction region for ions (not the required velocity) and for electrons (space charge creation).
- $\Theta_{\rm m}$ is the Mach angle: $\theta_m = \arcsin\left(\frac{1}{M}\right)$ M is the Mach number: $M = \frac{v_d}{v_i}$ with v_d the drift velocity and v_i the thermal ion velocity.
- Potential and current determination:
 - OML theory for the electron current collection and the ion current collection on the lateral surface.
 - $I_i = eN_iAv_d$ for the ion front face collected current (correct for a high Mach number).
 - Gauss theorem for the potential calculation.

Plasma wake - Ion density

Error < 1 % on collected currents vs. theory

Potential in the wake close to theory (Gauss)

Particle motion in E cross B field

Studied case: Describing the particle trajectory in E cross B field (constant \geq and uniform fields).

- ion temperatures = 10 eV or 1000 eV

ONER,

14

Particle motion in E cross B field

Case 2 (ion temperature = 1000 eV)

A total of 17 cases

- 4 extra comparisons with EQUIPOT
- Sphere with thin wires
- GEO case

17 Technical Data Sheets attached to Spis4 projects

the Description of Additional of Land

17

19/03/2013

SPINE meeting, Noordwijk,

SPIS-MAINTENANCE,

Conclusion and perspectives

- Conclusion
 - All the test cases lead to satisfactory results
 - The most challenging simulations concern Child Langmuir case and the case with small Debye lengths
 - Large CPU time necessary for 2 or 3 simulations (PIC population)
- Work pending
 - Automation of cases running by non-regression procedure (Spis5)
 - Delivery to community
- Perspectives
 - Extend the number of cases

SPIS-MAINTENANCE, SPINE meeting, Noordwijk, 19/03/2013

