SPIS-SCI validation studies for fields instruments

Anders.Eriksson@irfu.se

Swedish Institute of Space Physics, Uppsala SPINE XIX, March 19-20, 2012

SPINE XIV, ESTEC 2008 SPIS simulations in support of plasma instruments for Cosmic Vision

	A review of spacecraft plasma interactions effects on plasma
A. Hilgers (ESA)	measurements
	Electron density measurements in the magnetotail with different
A. Masson (ESA)	instruments
	Observation of SMART-1 plume plasma environment with the EPDP
M. Capacci (Laben)	plasma diagnostic package and future activities
	Charging active control: PLEGPAY experiment onboard ISS results;
M. Capacci (Laben)	activities on future systems
D. Rodgers (ESA)	Plasma measurements onboard CHAMP spacecraft
H. Laakso (ESA)	Observation of spacecraft plasma interactions with Cluster
D. Kataria (MSSL)	Spacecraft-plasma interactions: an MSSL perspective
	Cold plasma and electric field measurements in the Jovian system:
A. Eriksson (IRFU)	possibilities and challenges
	······································
A. Hilgers (ESA)	Modelling of plasma environment of Cluster electrostatic sensors
A. Eriksson (IRFU)	Wakes in cold tenous plasmas: nuisance and blessing
S. Clucas (ESA)	MMS electrostatic environment simulation
D. Rodgers (ESA)	Champ and Swarm plasma environment modelling

E-field instruments & Langmuir probes

- Rely on electric coupling to plasma, sensitive to s/c-plasma issues
- Asymmetric antenna or s/c configuration
- Photoelectron clouds and currents
- Secondary emission currents
- Wake potential, asymmetric shielding

Example missions

- Some missions needing instrument simulations:
 - In space: Rosetta, Cassini, Cluster, THEMIS
 - Upcoming: Swarm, BepiColombo, MMS
 - Design phase: JUICE, Solar Orbiter, SP+
- In most cases, wide ranges of plasma parameters are encountered
 - Example: Debye lengths for Rosetta vary from a fraction of a mm (fully developed inner coma) to tens of meters (tenuous solar wind at 3 AU)
 - No single simulation setup can cover all this with just a change of parameter values
- Some include thin (mm) and long (tens of m) wire booms challenging to model
 - Cluster, THEMIS, MMS, BepiColombo MMO

SPIS-SCI developments

- Many important improvements for science users, for example:
 - Backtracking. Current to small areas (sensors) on big s/c can be measured at good accuracy without excessive number of particles.
 - Particle instruments and Langmuir probes. Possible to define detailed geometry, backtrack currents and step bias potential.
 - Photoemitting thin wires. Enables realistic modeling of influence on probes from nearby elements.
 - Parallellized particle pushing.

SPIS-SCI validation aims (field instruments)

- Verify SPIS-SCI can be used for studying performance of E-field instruments and Langmuir probes
- Comparisons where possible:
 - Simplified analytical expressions
 - Other simulation results
 - Data

Cluster, THEMIS, MMS, Bepi MMO

- Missions with long wire boom electric fields
- Problematic to simulate in old SPIS
 - Particularly including photoemission
- SPIS simulations by Prakash (2007)
- Problem:
 - Large scale size disparity (mm to hundreds of m)
 - Simulation box needs to be hundreds of meters
 - Enormous number of particles needed in strict PIC approach to get reasonable number of particles to a small probe
- SPIS-SCI: Backtracking solves scale disparity issue
- SPIS-SCI also allows photoemitting thin wires, which also can be used as Langmuir probes

Cluster wire boom E-field instrument

- Cluster: 4 ESA s/c in orbit since 2000
- ≈2 x 20 RE
- Wire booms 88 m tip2tip

Cluster E-field features to study

- Sunward offset
 - Always in double
 probe instruments in
 tenuous plasmas
 - Around 1 mV/m on
 Cluster
 - Attributed to
 asymmetric
 photoemission
 - First simulated by Cully et al (2007)

- Enhanced wake
 - Ion flow diverted by strongly positive s/c in tenuous plasma
 - Can give signatures of up to 10 mV/m in data
 - First simulated by
 Engwall et al (2006)
 - No previous simulation includes the probes themselves

Biased elements

- Fig from Cully et al, JGR 2007
- Potentials:
 - Probe at Vp, about 1 V positive to <u>local</u> plasma
 - Thin wire at Vp
 - Guard at Vp 6 V
 - Puck at Vp + 1.3 V
 - Boom at Vsc

Figure 1. Geometry of the Cluster spacecraft and the EFW wire booms. There are four distinct electrical elements: (1) the spacecraft and wire booms, at a potential determined by the current balance in the plasma (but specified as a parameter in the simulation); (2) the guard, normally biased to 6 V below the probe; (3) the roughly cylindrical puck (preamplifier enclosure) (diameter of 8 cm and length of 3 cm), normally biased to 1 V above the probe; and (4) the thin (0.3 mm radius) wire and the probe, connected with a constant bias current to the spacecraft. The probe is a sphere with a diameter of 8 cm, and the wire radius (including the guard) is 1.1 mm.

SPIS CAD model

Cluster geometric model: large scale

Cluster geometric model: details of mesh around probe

Cluster in solar wind (Vsc 10 V)

SPIS-SCI probe characteristic

 Simulated for tv opposing probe (sunwardantisunward)

current (A)

- Tenuous solar v plasma
- Horizontal shift at given (bias) current gives sunward offset

Photo e-

LP 3. ph e- LP 4. ph e-, in wake

- Possible to study performance as function of environment, spin phase, UV flux...
 - Will require lots of CPU time, but is now possible

Guillemant/Nilsson SPIS-SCI simulation (Vsc = 10 V) Cully et al (2007) (Vsc = 25 V)

What does this mean?

- Could be done before:
 - SPIS: Simulate potential pattern neglecting influence of thin wire photoemission
 - Cully vacuum code:
 Instrument performance in
 long Debye lengths
 - Miyake et al PIC code:
 Instrument performance in any plasma for distorted instrument geometry

- Can be done in SPIS-SCI:
 - Potential pattern including photoemission and secondary emission from every element
 - Instrument performance in any plasma
 - Detailed and realistic geometric model

Conclusions

- SPIS-SCI can be used to evaluate performance of plasma and field instruments
 - Particle trajectories
 - Blocking by s/c
 - Photoemission, secondaries
- The software demands an effort by the user
 - Need for training events
 - Need for support and documentation
 - Also a community issue we can all help
- Parallellization of particle pusher means simulations take days rather than weeks
- SPIS-SCI really gives new possibilities in this field!