(Charge collection and emission at)

A light tether mission at Jupiter

Juan R. Sanmartín Claudio Bombardelli, Antonio Sánchez-Torres

Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid

SPINE Meeting

ONERA / Toulouse

September 28 - 29 2009

* Jovian missions are requiring in power and propulsion

Power for EJSM missions Jupiter Europa Orbiter (NASA): 0.54 kW RPS Jupiter Ganymede Orbiter (ESA): 51 m² SA But... Solar illumination weak Present (thermocouple) RPSs inefficient, ²³⁸Pu lacking (US National Research Council Report, 2009) (Chemical) Propulsion for EJSM:

JEO launch mass = 5040 kg 2646 kg, propellant 1490 kg, flight system mass + launch vehicle adapter JGO launch mass = 4362 kg 2562 kg, propellant 1147 kg, flight system mass + launch vehicle adapter

* Electrodynamic Tethers can provide power and propulsion

Jovian magnetic field B induces ambient (*motional*) field E_m in tether frame E_m drives current from plasma into tether
B exerts Lorentz force on tether current (which can also power a load)

ButTether current is ambient dependentIt needs no propellant but must act over large number of orbitsMust repeatedly visit high \mathbf{B} , high plasma density N_e near JupiterCritical issue: Dose accumulates when crossing Radiation Belts

- Small tether mission-stage here proposed: Motion on circular equatorial orbits below Belts (start at $1.3 - 1.4 R_J$)
- Lorentz drag makes spacecraft slowly spiral in (over months) generating substantial power at load because of deep Jovian gravity well

Decay time $\propto M_{SC} / wL^{5/2}$ Energy generated from 1.3 to $1.05R_J$

~ 820 w×month / 40kg

Prograde orbit for maximum power at efficiency = 10/19(anodic length segment = 0.6)

Use no tilt, no offset magnetic dipole, Divine-Garrett thermal-plasma models Power load next to hollow cathode Tether kept taut by spinning

Neglect Hollow cathode impedance Ion current collection / Ohmic losses

* Mission science capabilities

- Nearby observations of planet interior
 - \Rightarrow high resolution determination of

gravity / magnetic fields bulk abundance of water

- Long-time data to determine atmospheric variability over different time scales

Spatially resolved observations to understand transport processes

- Below the inner (*Halo*) ring there are charged grains
 Start near the strongest Lorentz resonance at 1.4 *R_J* Grain-tether intetaction makes for an interesting dusty-plasma problem
- Active experiment:

Spinning tether emits beam of secondary electrons half of the time Secondaries experience magnetic mirroring, produce auroras

* Grain dynamics and charge evolution

Typical grains (not quite spherical) have 'radius' $R \sim 0.02$ - 50 microns,

Density ~ 2 g/cm³, Mass ~ $10^{-19} - 10^{-9}$ kg

A grain acquires (positive / negative) charge $Q \propto R$ from balance of *thermal electron collection* against

thermal ion collection + photoelectron / secondary electron emission

Actually, charge equilibrium-time is typically longer than grain flight-time as the grain moves into different ambient conditions

At 1.4 R_J ($\Omega_{orb} = 2\Omega_J$) there is a (strongest) Lorentz resonance arising from the g_2^2 Schmidt coefficient (about 0.45 Gauss) Grain dynamics and charge evolution must be jointly solved

Typically, gravitational (F_g) and magnetic (F_{mag}) / electric (F_{el}) forces are dominant

 F_g varies as R^3 / a^2 (*a* is Jovian radial distance)

 $F_{mag} \sim Q \ v_{orb} B \sim R / a^{7/2} \quad (v_{orb} \propto 1 / \sqrt{a}, B \sim 1 / a^3)$

$$F_{el} \sim Q \ v_{cor} B \sim R / a^2 \qquad (v_{cor} \propto a)$$

 $(v_{cor} B \text{ is the motional electric field in a non-orbiting frame})$

The ratio F_{mag} / F_g varies as $1 / R^2 a^{3/2}$

$$F_{el}/F_g$$
 varies as $1/R^2$

* Auroral sounding of atmosphere

Rotation-averaged gravity-gradient torque on spinning tether vanishes Averaged magnetic torque must then vanish too

This torque vanishes under hollow cathode (HC) operation on a tether end a (over half the spin period) **if** masses at ends a and b are chosen properly $\Rightarrow \sim$ zero torque over the other half period **only** if end b carries no HC

Then current = 0 at **both** ends: tether electrically *floating*

It attracts ions on nearly its full length \Rightarrow secondary electrons from yield γ form beam along **B**

Particle and energy flux grow with distance *h* from tether top

Beam electron flux much weaker than ambient thermal flux

$$\Phi_b(h) = N_e \Omega_e w \sqrt{\frac{m_e}{m_i} \frac{\gamma(eE_t h)}{2\pi \cos(dip)}} \qquad (\Omega_e \text{ gyrofrequency})$$

Beam/ambient density ratio very small

$$\frac{N_b}{N_e} = \frac{\Omega_e w}{\sqrt{eE_t h/m_e}} \sqrt{\frac{m_e}{m_i}} \frac{\gamma(eE_t h)}{4\sqrt{2}\cos^2(dip)}$$

- Dip is here the angle between **B** and the plane perpendicular to the tether (the *magnetic dip* in case of vertical tether)

$$\mathbf{u}_{t} = \mathbf{u}_{r} \cos \psi + \mathbf{u}_{\phi} \sin \psi$$

sin dip = $\mathbf{u}_{B} \cdot \mathbf{u}_{t}$

$$= \frac{B_r \cos \psi + B_{\varphi} \sin \psi}{\sqrt{B_r^2 + B_{\theta}^2 + B_{\varphi}^2}} \quad \text{(VIP4 mode)}$$

- * Pitch-angle α distribution
- * Simplest loss-cone pitch $\sin^4 \alpha_{lc} = \frac{1}{L^5 (4L-3)}, \quad L \equiv \frac{a}{R_J}$
- \Rightarrow Pitch range in e-beam

 $dip(t) < \alpha < \alpha_{lc}(L)$

