### **ESA Plasma instrument activities**

Langmuir probes (ESA/ESTEC/RSSD)
ESA Lead Scientist: J-P. Lebreton
Collaboration with P. Travnicek et al., Astronomical Institute, Prague, CNRS, Czech Space Research Centre
Demeter: ISL (Instrument Sonde de Langmuir)
Proba-2: DSLP (Double Segmented Langmuir Probe)

SEPS (TEC-EES GSTP development)
ESA Tech Officer G.Drolshagen
Design: G.Schmidtke et al, Fraunhofer Institute, Freiburg,
Development: Astrium Germany



Demeter: Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions

- CNES
   microsatellite
- Sun-synchronous 715km orbit
- ISL (Instrument Sonde de Langmuir)

## **ISL Langmuir Probes**



1 Hz sweep frequency, [-7.38 .. 7.62 V] 128 sweep points  $\rightarrow$  8 ms time steps.



LP2 - ball diameter 4 cm six surface sectors of diameter 1 cm



Different modes:

- -ISL1-1, LP1 sweep
- -ISL1-2, LP1 offset sweep
- -ISL1-3, LP1 vs. LP2
- -ISL2, LP2 & LP1 sweep
- -ISL3, surface control





Typical measurements during a 1/2 orbit

#### Proba-2

- Technology mission
- Solar observatory
- Launch Nov 2009
- ~700km Sun-synchronous orbit
- DSLP (Double Segmented Langmuir Probe)



### DSLP on-board placement

#### DSLP

mounted on solar panels

• will measure ambient plasma characteristics

#### Proba-2 Post-shipment activities in Baikonour, Sept. 2009

#### **DSLP sensors with Protective Covers**

#### DSLP in flight configuration





# Spherical EUV and Plasma Spectrometer (SEPS)





Fraunhofer Institut Physikalische Messtechnik

Wilfried Pfeffer, EADS Astrium Friedrichshafen, Phone: 0049-7545-8-3958 Wilfried.Pfeffer@astrium.eads.net

Dr. Raimund Brunner / Dr. Werner Konz IPM Freiburg Phone: 0049- 761- 8857-310 / - 289 Raimund.Brunner@ipm.fraunhofer.de Werner.Konz@ipm.fraunhofer.de Gerhard.Schmidtke@ipm.fraunhofer.de

#### **Optimized Design of Plasma Spectrometer**

#### SEPS

SEPS Sensor with protection cover (Plexiglas) without electronics.

A spehreical sensor plus spherical grids (Ni), optimized for best optical transparency.









The device consists of three isolated spheres, the metallic sphere (MS), a highly transparent Inner Grid (IG) and Outer Grid (OG). Each one is being connected to sensitive floating electrometers. Simply by setting different potentials to the outer grid as well as to the sphere and varying the voltage to the inner grid, measurements of the ambient plasma parameters and of the extreme ultraviolet (EUV) radiation can be achieved. To reach a more compact configuration of the stack of the spheres from an electromagnetic point of view, the Inner Grid consists of two layers with a distance of about 2 mm.



3 x Electrometer: 100 pA – 10  $\mu A$  3 x DC: – 70 V to + 70 V

EADS Astrium, Fraunhofer-IPM, September 2009



Fraunhofer Institut Physikalische Messtechnik

#### Schematic views of SEPS

SEPS





Technical drawing of the socket part of the sensor.

EAD

Model of the mounting principle on top of the electronic box.

![](_page_9_Picture_6.jpeg)

![](_page_9_Picture_7.jpeg)

|                                        | Voltage                             |                   |                   |  |
|----------------------------------------|-------------------------------------|-------------------|-------------------|--|
| Mode                                   | sphere                              | inner grid        | outer grid        |  |
| _angmuir                               | +88                                 | = +88 =           | = +88             |  |
| Plasma shielded Langmuir               | +2070                               | V <sub>pl</sub> = | = V <sub>pl</sub> |  |
| RPA plasma electron                    | +20                                 | +1070             | V <sub>pl</sub>   |  |
| RPA plasma ion                         | -20                                 | +7010             | V <sub>pl</sub>   |  |
| EUV                                    | +7070                               | -50               | +50               |  |
| Calibration                            | 0                                   | -70               | +70               |  |
| Debris (side effect, under evaluation) | different voltage between IG and OG |                   |                   |  |

V<sub>pl</sub>: plasma potential, also determined by the sensor RPA: Retarded Potential Analyzer

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_5.jpeg)

|                                    | Description                                                                                                                                                                      |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                          | (derived from different measurement modes)                                                                                                                                       |  |  |  |
| η <sub>e</sub> , η <sub>i</sub>    | electron density, ion density                                                                                                                                                    |  |  |  |
| T <sub>e</sub>                     | plasma temperature                                                                                                                                                               |  |  |  |
| E <sub>e</sub> , E <sub>i</sub>    | energy distribution of electrons and ions                                                                                                                                        |  |  |  |
| V <sub>sc</sub> , V <sub>pl</sub>  | space craft potential, plasma potential                                                                                                                                          |  |  |  |
| EUV                                | EUV spectra, important range ~ 6 – 70 eV, spectral resolution for intensity in specific spectral ranges                                                                          |  |  |  |
| TEC, EUV <sub>sun activity</sub> … | several deduced indices like<br>total electron content, sun activity etc.<br>density of debris dust (1-100µm)<br>(detection of impact plasma events – <b>under evaluation</b> !) |  |  |  |
| δ <sub>debris</sub>                |                                                                                                                                                                                  |  |  |  |

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

![](_page_12_Picture_1.jpeg)

| SENSOR                     |                                                                                  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------|--|--|--|
| sensor dimension           | 180 mm (sensor height) +<br>50 x 180 x 120 mm (E-Box)                            |  |  |  |
| sphere diameter            | 80 mm                                                                            |  |  |  |
| surface of inner sphere    | electro plated platinum                                                          |  |  |  |
| grid material              | nickel                                                                           |  |  |  |
| weight                     | 180 grams sensor +<br>1500 grams electronic (incl. radiation shielding)          |  |  |  |
| ELECTRONICS                |                                                                                  |  |  |  |
| electrometer               | 100 pA – 10 μA, 16 bit A/D (2 adustable ranges<br>125nA/100μA, 0.05% resolution) |  |  |  |
| electrical potential range | ± 70 V, ~ 10 mV resolution                                                       |  |  |  |
| power consumption          | ~ 4,5 W (mean value) @ 28V input voltage<br>Stand-By 2,8 Watt                    |  |  |  |
| data rate                  | ~ 10 kbit/s total                                                                |  |  |  |
| Serial Interface           | RS422 (Command and Data interface)<br>Flexible command interface for other modes |  |  |  |
| Data storage               | 256 MB internal memory for instrument data                                       |  |  |  |

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

| ELECTRONICS cor    | ELECTRONICS cont. |                                                                 |  |  |  |  |
|--------------------|-------------------|-----------------------------------------------------------------|--|--|--|--|
| internal generated | +2.5V             | FPGA core voltage                                               |  |  |  |  |
| power supplies:    | +3.3V             | SDRAM supply voltage                                            |  |  |  |  |
|                    | +5V               | FPGA I/O voltage,                                               |  |  |  |  |
|                    |                   | Supply voltage for Data Interfaces                              |  |  |  |  |
|                    | +/-12V            | Supply voltage for 3 D/A Converter and                          |  |  |  |  |
|                    |                   | Supply voltage for 3 Voltage Amplifiers                         |  |  |  |  |
|                    | +/-100V           | Basic high supply voltage as input for the 3 voltage amplifiers |  |  |  |  |
|                    | +5V_E1            | Isolated supply voltage for                                     |  |  |  |  |
|                    |                   | Electrometer 1 and A/D-Converter 1                              |  |  |  |  |
|                    | +5V_E2            | Isolated supply voltage for                                     |  |  |  |  |
|                    |                   | Electrometer 2 and A/D-Converter 2                              |  |  |  |  |
|                    | +5V_E2            | Isolated supply voltage for                                     |  |  |  |  |
|                    |                   | Electrometer 3 and A/D-Converter 3                              |  |  |  |  |

| - | EADS Astrium, Fraunhofer-IPM, September<br>2009 | EADS | Fraunhofer<br>Institut<br>Physikalische<br>Messtechnik |  |
|---|-------------------------------------------------|------|--------------------------------------------------------|--|

#### **Design for Develoment Model finished**

Development Model manufactured and tested including electronics :

- Measurement of Plasma Parameters at Plasma Chamber ESA/ESTEC
- Measurement of EUV at BESSY and EUV Test Facility IPM Freiburg

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_15_Figure_1.jpeg)

EAD

Erium

#### **Test Results EUV measurement Bessy (example)**

![](_page_15_Picture_4.jpeg)

2009

#### **Test Results Plasma measurement RPA Ion Mode**

![](_page_16_Figure_3.jpeg)

#### **Test Results Plasma measurement Langmuir Mode**

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

**SEPS** 

## Remarks

- LPs simple, flexible, well characterised
   Good results returned from DEMETER
- SEPS provides added functionality
- For accommodation studies and data interpretation, there is an important role for plasma-spacecraft-sensor simulations
  - DSLP mounted on solar panel
  - SEPS modification of LP currents due to additional grids

## END