

SPIS 4.0 SPIS-Num upgrade overview

15th SPINE Workshop, 28-29 September 2009

ROUSSEL J.-F., ROGIER F., DUFOUR G., FOREST J.

ONERA Artenum

return on innovation

Outline

Introduction

> Overview of new SPIS v4.0 features

Circuit solver

DESP – SPIS-TD IPM7

SPIS context and project overview

- SPINE (Spacecraft Plasma Interaction Network in Europe) community setup around year 2000 (A. Hilgers, J. Forest...):
 - * An idea was born: gather European efforts for SC-plasma interactions
 - * Exchange: knowledge, data, codes, results...
 - ★ Boost the development of a common simulation toolkit: ESA ITT in 2002 => SPIS
- > SPIS Development (Spacecraft Plasma Interaction Software) :
 - ★ Initial development: 2002 2005
 - * ONERA-Artenum consortium
 - ★ ESA/ESTEC contract
 - ★ Solver enhancement: 2006 2009
 - * Mostly ONERA
 - * ESTEC contract, French funding
 - ***** Others:
 - * Some community developments
 - * Some CNES-funded modules (EP, ESD)
 - * ESD triggering modelling in progress (ESA TRP)
 - * Probably soon: EP integration, SPIS-GEO...

Overall status of SPIS code

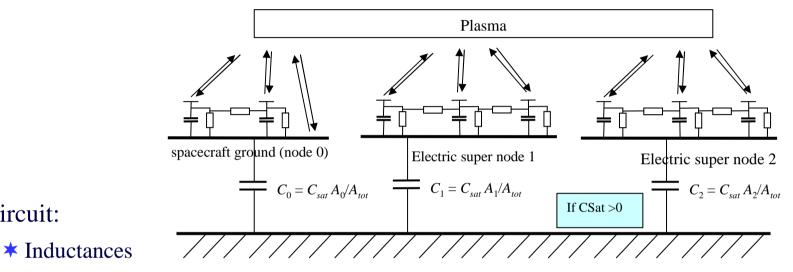
- > SPIS-UI:
 - * Real framework: task monitor, data management, script console (jython)...
 - Interfacing with modeler/mesh-generator, postprocessing tools...
- > SPIS-Num:
 - * Plasma:
 - * Matter models: PIC (leapfrog/exact (potential P1)), Boltzmann distribution, multi physics
 - * E field solver: Poisson, non linear Poisson, singularities (wires, plates)
 - * Volume interaction: CEX (MCC)
 - * Spacecraft:
 - Material properties: secondary emission (under electron/proton/UV), conductivities (surface/volume, intrinsic/RIC), field effect, sputtering (recession rate, products generation and transport)
 - * Equivalent circuit: coatings (RLC) + user-defined discrete components (RCV), implicit solver
 - * Sources: Maxwellian, Axisymmetric, two axes
 - * Specific features:
 - * Time integration: control at each level (population, plasma, simulation)
 - * Numerical times: integrate fast processes over a smaller duration (electrons/ions, plasma/SC...)
 - Multiscale capabilities: cell = box / 100,000 (cf. examples below)
 - * Modularity: OO (Java), "plug-in" classes (Java introspection)

Recent developments => SPIS v4.0

- > Objective: extension of SPIS to overcome some limitations of the current version of SPIS, mostly including :
 - Improved time-dependent solvers
 - * Multi physics (dense / low density regions, multi space scale)

> Context:

- * ESA ARTES contract, French funding (optional)
- * Project:
 - * 2006 through 2009
 - * Code improvement
 - * Then testing/validation and possible improvement
- * Collaboration with CNES (funding, validation data...)


Released in July 2009 (v4.0RC)

Major improvements in SPIS v4.0 (1/3)

Surface potentials / SC circuit: \succ

Cf. the end of this presentation

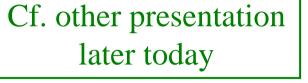
* Exact Csat (through Gauss theorem) instead of user defined

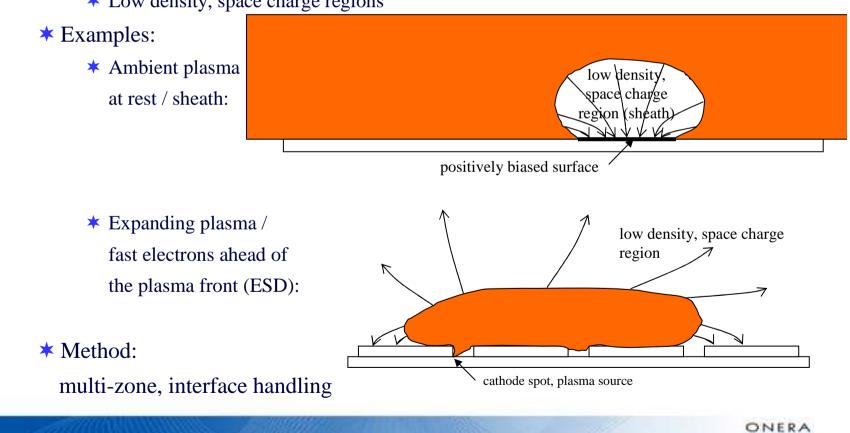
Circuit solver: *

***** Circuit:

- ***** Implicit
- * Variable, automatic time step

Constraints:

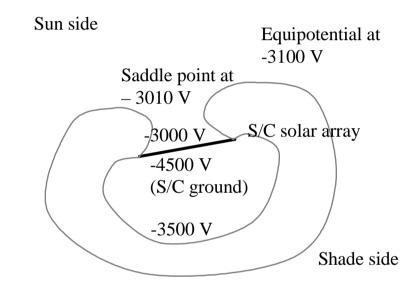

- multi time scale 10E-11 to 10E4 s !
- steep function (FN emission)



ONER

Major improvements in SPIS v4.0 (2/3)

- Plasma dynamics (1/2):
 - Multi-physics
 - ***** Typically simulate in a single simulation:
 - * Dense quasi-neutral regions
 - * Low density, space charge regions



Major improvements in SPIS v4.0 (3/3)

- > Plasma dynamics (2/2):
 - * Potential barrier / GEO charging:
 - Blocking of photo/secondary emission by the barrier (small barrier height compared to potentials involved)
 - Accuracy of (collected) currents: small object in a large computation box (noisy) => backtracking needed (can be useful for detector also e.g.)
 - Multi-time scale modelling
 Implicit SC circuit solver

ONERA

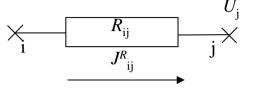
Specific ''small'' improvements

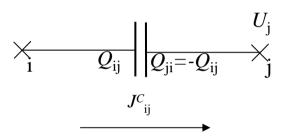
> SPIS v4.0:

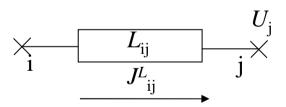
- Particle pusher, local switch between
 - * constant E (in tetrahedron): exact integration (parabolic)
 - varying E or presence of B: Runge-Kutta Cash-Karp method (RK 4th order with adaptive time step to control accuracy
- * "Exact Csat":
 - * Indeed do not use a (user-defined) Csat
 - But uses Gauss theorem (integral form of Poisson eq.) to determine Vsat (ensuring charge conservation)
- Cathode spot model

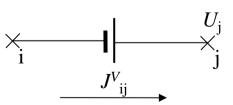
Coming soon (SPIS v4.1?):

- Completion of symmetry conditions (particle specular reflection)
- Completion of particle trajectory plotting
- Improve neutral particle handling
- * Improve material handling (from external DB through UI)
- Other UI improvements

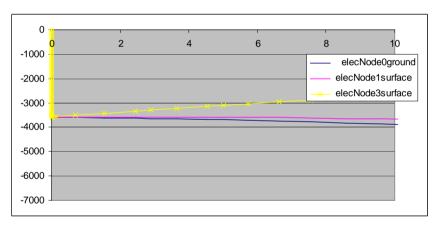

The circuit solver

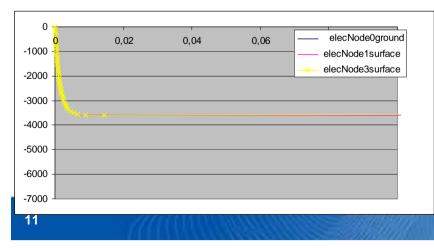

> Circuit equations: $-\underline{\underline{C}}.\underline{\underline{U}} + \underline{\underline{G}}.\underline{\underline{U}} + \underline{\underline{P}}\underline{\underline{J}}^{L} + \underline{\underline{I}}^{I} = 0$

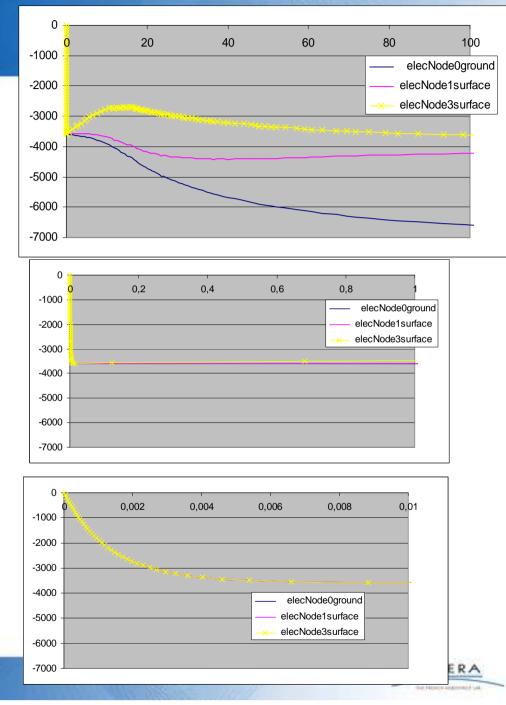

$$\underline{\dot{J}^{L}} = \underline{\underline{H}}.\underline{\underline{U}}$$


or $\begin{bmatrix} \underline{\dot{U}} \\ \underline{\dot{j}}^{L} \end{bmatrix} = \begin{bmatrix} \underline{\underline{C}^{-1}} \cdot \underline{\underline{G}} & \underline{\underline{C}^{-1}} \cdot \underline{\underline{P}} \\ \underline{\underline{\underline{H}}} & 0 \end{bmatrix} \cdot \begin{bmatrix} \underline{\underline{U}} \\ \underline{\underline{J}}^{L} \end{bmatrix} + \begin{bmatrix} \underline{\underline{C}^{-1}} \cdot \underline{\underline{I}}^{T} \\ 0 \end{bmatrix}$

- > Implicit solver:
 - Need to anticipate on I variation with V
 - * Linear (in the matrix equation)
 - * Or non linear on the source term $I^{l}(V)$: plasma collection
 - => each physical process to supply dI/dV and validity
 - Time step maximised to saturate validity






ONER

The circuit solver

- > Automatic time step:
 - * An example (GEO charging)
 - * Quite large range of time scales

Conclusion and perspectives

- Major development done
- Code released (v4.0RC in July, v4.0 ~ next month)
- Testing done by contractor and ESA
- Further testing by the community welcome

