GEO simulations with SPIS and result comparison with American spacecraft charging codes

Swedish Space Corporation

Presented by

Bjarne Andersson

(bjarne.andersson@ssc.se)

Toulouse, SPINE meeting, Sept 28-29 2009 Swedish Space Corporation – www.ssc.se

Upcoming missions

Satellites for:

- Telecommunication
- Earth observation
- Climate research
- Technical development

Swedish Space Corporation - www.ssc.se Toulouse, SPINE meeting, Sept 28-29 2009

Premier 2016 **PROBA-3 2013** Smart OLEV 2012 Small GEO 2012 Prisma 2010

Small GEO – An introduction

Small GEO illustration (Courtesy of OHB)

The Small GEO platform supports: > 300 kg payload mass > 3kW payload power > Total wet mass: 1.5 tons or 2.5 tons > Lifetime 15 years

The Small GEO program:

• General purpose small geostationary satellite platform.

• Currently being developed by a consortium led by the OHB System (Germany), Oerlikon Space (Swizerland), LuxSpace (Luxemburg) and SSC.

•SSC responsebilities: EP, AOCS

•First launch scheduled to 2012.

SMART-OLEV – An introduction

SMART-OLEV illustration (Courtesy of OSS)

The SMART-OLEV program:

SMART-OLEV life extension satellite ≻Wet mass ~1000kg ≻Service lifetime ~12 years

SSC in partnership with Kayser-Threde (Germany) and Sener (Spain) is developing the SMART-OLEV life extension satellite.

Provided service: Docks with GEO communications satellites at the end of their propellant life and provides attitude and orbit control functions for up to 12 additional years.

Marketed by Orbital Satellite Services (www.orbitalsatelliteservices.com)

SPIS validation by applying Davis test case from 2003

From 8th Spacecraft Charging Technology Conference, 2003:

VALIDATION OF NASCAP-2K SPACECRAFT-ENVIRONMENT
INTERACTIONS CALCULATIONS
V.A. Davis
Science Applications International Corporation
10260 Campus Point Dr., M.S. A1
San Diego, CA, 92121
Phone: 858-820-1008
FAX: 858-820-1052
E-mail. victoria.a.davistosaic.com
M.J. Mandell
B.M. Gardner
I.G. Mikellides
Science Applications International Corporation
L.F. Neergaard
Jacobs Sverdrup Technology
1 00
D.L. Cooke
Air Force Research Laboratory/VSBS
I Minor
NASA Marchall Snace Flight Center
re to roundain space right center
Abstract
The recently released Nascap-2k, version 2.0, three-dimensional computer code models
interactions between snacecraft surfaces and low-earth-orbit geosynchronous auroral and
Required SPIS updates:

- Multi-physics (By JF Roussel, Onera)

- NASCAP-2k materials not covered for in SPIS (JF Roussel, Onera and B Andersson, SSC)

Toulouse, SPINE meeting, Sept 28-29 2009 Swedish Space Corporation – www.ssc.se

American codes: NASCAP/GEO SEE Handbook NASCAP-2k

Environmental inputs

90% worst case environment for geosynchronous orbits as defined in C.K. Purvis, H.B. Garrett, A.C. Whittlesey, N.J. Stevens, *Design guidelines for assessing and controlling spacecraft charging effects*, NASA TP 2361, p. 3, 1984.

	Temperature	Density (cm ⁻³)
	(keV)	
Ions	29.5	0.236
Electrons	12.0	1.12

Used geometry model

Toulouse, SPINE meeting, Sept 28-29 2009

Swedish Space Corporation – www.ssc.se

3D Charging Layout

Toulouse, SPINE meeting, Sept 28-29 2009

Swedish Space Corporation – www.ssc.se

Charging trend curves

Ranging of spacecraft charging potentials

The results at 1000s summarized in the same table format for NASCAP/GEO, SEE Handbook, Nascap-2k and SPIS with SEE ("Chassi" is assumed to be surfaces cover with black kapton but also Teflon surfaces are well inline).

Part of the s/c	Chassi	SA (shadow side)	OSR	SA (solar side)	Main s/c structure	Top Antenna	Circular antennae
Material	Black kapton	Kapton	OSR	Solar Cells	Teflon	Non-conducting paint	Graphite
Absolut Charging	g (kV)						
			-8.23 to -				
NASCAP/GEO	-10.0	-8.2 to -13.1	10.7	-5.2 to -7.68	-7.5 to -12.7	-8.3 to -10.3	N/A
SEE Handbook	-8.6	None in model	-7.3 to -9.6	-3.6 to -5.7	-6.8 to -11.3	-7.5 to -11.3	N/A
			-10.0 to -				
Nascap-2k	-12.0	-11.5 to -14.4	13.7	-7.2 to -10.8	-7.9 to -14.0	-7.9 to -14.0	N/A
SPIS (With SEE)	-10.9	-12.9	-11.7	-6.1	-9.8	-9.7	-10.9
		(-10.9 to -13.9)		(-5.8 to -6.4)	(-7.9 to -11.6)	(-9.6 to -9.8)	
Differential charge	jing (kV)		_	_			
NASCAP/GEO		1.8 to -3.1	1.77 to -0.7	4.8 to 2.3	2.5 to -2.7	1.7 to -0.3	N/A
SEE Handbook		None in model	1.3 to -1.0	5 to 2.9	1.8 to -2.7	1.1 to -0.3	N/A
Nascap-2k		0.5 to -2.4	2 to -1.7	4.8 to 1.2	4.1 to -2	2 to -0.2	N/A
SPIS (with SEE)		-2.0	-0.8	4.8	1.1	1.2	0
		(0 to -3.0)		(5.1 to 4.5)	(3 to -0.7)	(1.1 to 1.3)	

Spacecraft potentials at equilibrium

Comparison of equilibrium solutions (kV)

Davis		Chasei	Max Differential		
		5	Positiv e	Negative	
	NASCAP/G EO	-20.3	10.8	-2.5	
SPIS Node notential vs Time	SEE Handbook	-17.8	10.4	-0.14	
	Nascap-2k	-19.5	7.8	-3.6	
0 <u>2000 4000 6000 8000 10000 12000 14000 16000</u> -2000 <u>-4000</u> -6000 <u>-8000</u>	Nascap-2k with Handbook object	-19.2	9.4	-0.06	
-10000 -12000 = -14000 Node 5 Node 5 Node 7					
1 1 1 1 1 1 1 1	Node 0 = I Node 1= T	Node 0 = Main spacecraft box (Teflon) Node 1= Top and bottom of spacecraft box (Black kapton)			
- 22000 2400	Node $2 = 0$	OSR (OS Top ante	SR)	on <i>)</i>	
-26000 -28000 -28000	conductiv	e paint)	antenna	Granhite)	
Time [s] Result with new SPIS with SEE (up to 15 000s).	Node 5 = 3	SA solar SA shad	side (So ow side (lar cells) (Kapton)	
Node 0, Node 1 and Node 4 are overlapping.	Node 7 = 9	SA boon	ns (Kapto	on)	

Toulouse, SPINE meeting, Sept 28-29 2009

Spacecraft potentials at equilibrium

Solar side

Result with new SPIS with SEE (at 15 000s)

Still significant conducting nodes:

Main spacecraft box (Teflon), Top and bottom of spacecraft box (Black kapton), OSR (OSR), Top antenna (Non conductive paint), Circular antennas (Graphite)

Spacecraft potentials at equilibrium

SPIS

Solar side

Conclusion

> The article used as reference for SPIS validation uses NASCAP/GEO, SEE Handbook and NASCAP-2k.

Same inputs (environment and geometry) have been used as far as possible.

> SPIS results are well inline with result generated by the American codes, especially NASCAP/GEO and NASCAP-2k that are most accurate.

> Reaching equilibrium for all spacecraft nodes have not been possible. Some troubleshooting still required.

WWW.SSC.Se

Toulouse, SPINE meeting, Sept 28-29 2009