
SPIS Other improvments currently

under developments

J. Forest(1), B. Thiebault (1), J.-F. Roussel (2), J.-C. Mateo Velez (2)

SPINE meeting Toulouse
28 Septembre 2009

(1) Artenum, (2) ONERA

1mardi 29 septembre 2009

Shared effort

�Most of these developments are funded by ESA CNN in the frame of th SPIS Time
Dependent evolution�Also external contributions �CETP �Artenum’s own effort�Improvment of JFreeMesh�Some elements coming from the Keridwen IME (e.g. Kerwizard...) �Cassandra/Cassandra-PCS

2mardi 29 septembre 2009

Improved / experimental aspect

3mardi 29 septembre 2009

Underdevelopment efforts
�Error treatment�Improved error and stack trace by the integration of a generic logger �Improved “user level/explicit” error messages�Development of a “Mesh Inspector” to analyse the mesh consistency. �Develop test plan and perform testing

�Material parameter input: �Re-factoring of data structure for material data in UI�Development of an In/Out module to read external files (e.g. NASCAP-2K)�Re-factoring of the interface with NUM and internal refactoring in NUM�Update/extension of material parameters list�Develop test plan and perform testing

�Physics improvements�Implement emission of multiple species from a single emitter�Implement reflection of particles at boundaries�Implement neutral particles�Develop test plan and perform testing

�Simplify the UI for tailored application�Wizard based approaches�Dedicated tools

4mardi 29 septembre 2009

Why an improved logging system ?
�Objectives

�Introduce a normalised logging system, in order to:

�Improve the awareness of the user in case of errors and warnings

�Facilitate the debugging and the users’feedbacks collection

�Detailed and standardised logging files to facilitate the diagnostic

�Evolutive, in order to extend the level of information for each error in
function on the level of expertise accumulated by the community

�Offer several levels of verbosity

�Dynamically configurable

�Use more standard technics, compliant with the several level of
languages used in SPIS (Jython, Java, native...)

5mardi 29 septembre 2009

Logging system principle and techno: Log4J and SFl4J
�Use open standards
�Abstract logging API: SFL4J�Generic and standardised API upper the really implemented logging API�Possibility to change the logging lib without modification of the source code�Used by several major projects �Improved performances and additional features (e.g profiling...)
�Logging and appending concrete implementations: Apache Log4J �The reference !�Offer several levels of verbosity (debug, info, warning, error...)�Offer a large set of outputs possibilities (console, files, html, etc..)�Offer an extensible framework�Both compliant with Jython an Java�The whole dynamically configurable

Logger1

Logger 2

Logger 3

Appender 1

Appender 2

Appender 3

Formatting

Formatting

Formatting

Console

File

HTML

6mardi 29 septembre 2009

A simple implementation
�Create loggers in the relevant classes or group of classes

�Replace «print» or «System.out.println» by a logging action

�Configure the link with the appenders (see next slide)�Use on of the three man appender/outputs defined�Error dialog box with link to the SPINE platform�Improved logging console�Log file (Saved in the project directory !)

7mardi 29 septembre 2009

Dynamical configuration

�Links between loggers and appenders can be defined at the runtime through an
XML based file (SPIS_ROOT/SpisUI/AuxLib/GUI/ressources/log4j.xml)

�Re-read at each restart of the framework. Does not need any re-compilation.

�Can define:

�The output format (data, time, source class or logger...)

�The link logger to appender (i.e select the output directions)

�The level of verbosity

8mardi 29 septembre 2009

Problematic of definition of a usefull message
�Most of the error cases in SPIS are due to wrong configurations in amount phases.�The reasons can be very variable and are generally not very well identified or, at least, not
in an systematic manner and is an evolutive situation that:�Depends on the studied physics and modelled systems�Depends on modelling process�Depends on the «functional module» between the seat and the keyboard�Cannot address all the cases�Difficult to give a unique, relevant and general answer (including for the «experts»)�To solve this problem, it is proposed to�Use the community�Build-up a system that can be progressivelly improved�Error messages generate a error dialog box, where a Web link is available toward a
dedicated forum on the SPINE platform, the SPINE’s Online Help.

Open the default
browser to the SPINE Online Help

http://dev.spis.org/projects/spine/
home/spis/software/onlinehelp/

9mardi 29 septembre 2009

Mesh inspector
�Sub-routine directly integrated into JFreeMesh�Better integration�Better performances�Currently implemented sub-routines / tests�Face/nodes relative position test�Cell/Faces neighbouring test�Quality evaluation (volume/height ratio) �Barycentre... �Dedicated GUI still under development and various approaches studied�As standalone module in order simple and «automatic» basic tests�As plug-ing in Cassandra in order to �Visualise and identify the corrupted mesh elements�Need to develop the corresponding VTK structure generator

10mardi 29 septembre 2009

NASCAP material reader/writer
�Development an import/exporter for NASCAP
based format based on SAX

�Developed in Java and based on SAX

�Integrated into org.spis.imp.io.nascap (i.e lib
of main SPIS GUI)

�NascapXMLReader

�NascapXMLWriter

�Modification of NascapMaterial as
NascapMaterialFactory (Modules.Properties)

�Development of a NascapMaterialImporter
module (Bin) in Jython + a basic GUI (under
development)

�Extension will probably lead to a format
extension/re-definition�This is of SPINE normalisation effort

0: ITOC (Material coated with ITO)
1: CERS (Solar cell material. Cerium doped silicon with MgF2 coating)
2: CFRP (Carbon fibre, conducting, no resin layer)
3: KAPT (Kapton, average values for SEE...)
4: COSR (Optical solar reflector without MgF2 coating. Cerium doped glass type)
5: EPOX (Epoxy. Thin layer of Epoxy resin on (conducting) Carbon fibre)
6: BLKP (Non conductive black paint. SEE yields are as measured for Electrodag 501)
7: BLKH (Non conductive black paint HERBERTS 1002-E. Values updated 3.10.88.)
8: BLKC (Conductive black paint Electrodag 501)
9: PCBZ (White paint PCB-Z assumed to be conductive in space)
10: PSG1 (White paint PSG 120 FD assumed to be conductive in space.)
11: TEFL (Teflon, DERTS measurements of SEE)
12: CONT (Generic Dielectric after 5 years in GEO environment.)
13: GOLD
14: SILV (Silver as from NASCAP library)
15: ALOX (Oxydized Aluminium. SEE yields from DERTS for Aluminium/Kapton)
16: STEE (Steel, SEE sigma +Emax from DERTS, curve shape from CONT material)
17: AL2K (Aluminium according to NASCAP-2k)
18: AU2K (Gold according to NASACP-2k)
19: KA2K (Kapton according to NASACP-2k))
20: TE2K (Teflon according to NASACP-2k)
21: OSR2K (OSR according to NASACP-2k)
22: BK2K (Black Kapton according to NASACP-2k)
23: SC2K (Solar Cells according to NASACP-2k)
24: NP2K (Non-conductive paint according to NASACP-2k)
25: GP2K (Graphite according to NASACP-2k)

11mardi 29 septembre 2009

Data structure: current status and evolutions
�Current structure based on a «composition» of Materials.�SPIS-UI and SPIS-Num structures close to each other.�But still Jython based and not a clean object oriented structure

MaterialNNum
MatModelId

MatTypeId

MatThickness

PhotoEmis

ElecSecEmis

ProtSecEmis

VolConduct

IndConduct

SurfConduct

Temperature

SunFlux

sharedProp['defaultMaterialList']

NascapMatterial
Id

Name

Nascap param 1

Nascap param 2

Nascap param 3

Nascap param 4

Nascap param 5

Nascap param 6

Nascap param 7

...

sharedProp['defaultNascapMaterialList']

Material

SPIS-NUM
Future

Currently

Normalised NASCAP
parameters (19)

12mardi 29 septembre 2009

Physics improvments

�Work mainly on SPIS-NUM side�Tasks to be done:�Implementation of multi-species on single emitter�Reflecting for particles�Implementation of neutral particles�Validation and testing

13mardi 29 septembre 2009

Simplified interfaces for taylored processes
�Introduction of a wizard based approach�Start from «template project»�Let the access to only «key parameters»�Guide the user step-by-step�Generate a «fully standard» SPIS project,

usable as usual. �Based on a triple layer architecture�A generic wizard engine (KerWizard),
runnable as standalone application or SPIS’s
task.�A set of tailored panels, that pilots SPIS-UI�SPIS-UI as «piloted model»

SPIS projects
templates

Setting through
wizards

Generated
«classic» SPIS project

SPIS-NUM running

14mardi 29 septembre 2009

Simplified interfaces for taylored processes
�Introduction of a wizard based approach�Start from «template project»�Let the access to only «key parameters»�Guide the user step-by-step�Generate a «fully standard» SPIS project,

usable as usual. �Based on a triple layer architecture�A generic wizard engine (KerWizard),
runnable as standalone application or SPIS’s
task.�A set of tailored panels, that pilots SPIS-UI�SPIS-UI as «piloted model»

SPIS projects
templates

Setting through
wizards

Generated
«classic» SPIS project

SPIS-NUM running

14mardi 29 septembre 2009

Simplified interfaces for taylored processes
�Introduction of a wizard based approach�Start from «template project»�Let the access to only «key parameters»�Guide the user step-by-step�Generate a «fully standard» SPIS project,

usable as usual. �Based on a triple layer architecture�A generic wizard engine (KerWizard),
runnable as standalone application or SPIS’s
task.�A set of tailored panels, that pilots SPIS-UI�SPIS-UI as «piloted model»

SPIS projects
templates

Setting through
wizards

Generated
«classic» SPIS project

SPIS-NUM running

14mardi 29 septembre 2009

Simplified interfaces for taylored processes
�Introduction of a wizard based approach�Start from «template project»�Let the access to only «key parameters»�Guide the user step-by-step�Generate a «fully standard» SPIS project,

usable as usual. �Based on a triple layer architecture�A generic wizard engine (KerWizard),
runnable as standalone application or SPIS’s
task.�A set of tailored panels, that pilots SPIS-UI�SPIS-UI as «piloted model»

SPIS projects
templates

Setting through
wizards

Generated
«classic» SPIS project

SPIS-NUM running

14mardi 29 septembre 2009

Simplified interfaces for taylored processes
�Introduction of a wizard based approach�Start from «template project»�Let the access to only «key parameters»�Guide the user step-by-step�Generate a «fully standard» SPIS project,

usable as usual. �Based on a triple layer architecture�A generic wizard engine (KerWizard),
runnable as standalone application or SPIS’s
task.�A set of tailored panels, that pilots SPIS-UI�SPIS-UI as «piloted model»

SPIS projects
templates

Setting through
wizards

Generated
«classic» SPIS project

SPIS-NUM running

14mardi 29 septembre 2009

Simplified interfaces for taylored processes
�Introduction of a wizard based approach�Start from «template project»�Let the access to only «key parameters»�Guide the user step-by-step�Generate a «fully standard» SPIS project,

usable as usual. �Based on a triple layer architecture�A generic wizard engine (KerWizard),
runnable as standalone application or SPIS’s
task.�A set of tailored panels, that pilots SPIS-UI�SPIS-UI as «piloted model»

SPIS projects
templates

Setting through
wizards

Generated
«classic» SPIS project

SPIS-NUM running

14mardi 29 septembre 2009

Conclusion
�The work must go on.

15mardi 29 septembre 2009

