

MEO-GEO Tool Development

SPINE Meeting 28-29 September 2009 ESTEC

Electromagnetics & Space Environment Division – TEC-EES

Background

- GEO charging common engineering problem
- New SPIS capabilities aimed at better GEO charging simulation
 - Current through back-tracking
 - Implicit capacitance calculation
- SPIS flexibility means
 - Choice of physics methods
 - User control of the simulation process
- Steep learning curve for SPIS users

Electromagnetics & Space Environment Division – TEC-EES

🛃 Spacecraft Plasma Interaction System 🥘

File Edit GEOM Mesh Properties Groups Fields Solvers PostProcessing Tasks Data Bus Reporting Tools Options Help

Pre-Processing Simulation Post-Processing

🔲 Global Parameters Editor 👘 🗹 🖂											
MultiZone Volum	e Interactions Surface Intera		ctions	Outputs	Plasr	na	Simulation control]			
B Field Spacec			acecraft				Poisson equation			Scenario	
Name	Description			Туре			Unit		Value		
avPartNbPerCell	average number of super-par			. float			None		5.0		
electronDensity	Electron density (1st population)			float			[m-3]		1.0E7		
electronDensity2	Electron density (2nd populati			float			[#/m3]		0.0		
electronDistrib	Name of the VolDistrib class t			string			None		BacktrackingPICCompositeVolDistrib		
electronDistrib2	Name of the VolDistrib class t			string			None		PICVolDistrib		
electronDt	Maximum integration time ste			float			[s]		-1.0		
electronDt2	Maximum	n integration	time ste	float			[s]		-1.0		
electronSpeedUp	Numerica	al times spee	ed-up fa	float			[-]		1.0		
electronSpeedUp2	Numerica	al times spee	ed-up fa	float			[-]		1.0		
electronTemperature	Electron to	Electron temperature(1st pop			float				1.0		
electronTemperature2	Electron temperature(2nd po			float			[eV]		1000.0		
environmentType	Name of the Environment clas			string			None		BiMaxwellianEnvironment		
ionDensity	lon density (1st population)			float			[m-3]		1.0E7		
ionDensity2	ion density (2nd population)			float			[#/m3]		0.0		
ionDistrib	Name of the VolDistrib class t			string			None		BacktrackingPICCompositeVoIDistrib		
ionDistrib2	Name of the VolDistrib class t			string			None		PICVolDistrib		
ionDt	Maximum integration time ste			float			[s]		-1.0		
ionDt2	Maximum integration time ste			float			[s]		-1.0		
ionSpeedUp	Numerical times speed-up fa			float			[-]		1.0		
ionSpeedUp2	Numerica	Numerical times speed-up fa			float				1.0		
ionTemperature	lon tempe	Ion temperature (1st populati			float				1.0		
ionTemperature2	Ion temperature (2nd populat			float			[eV]		1000.0		
ionType	First ion p	First ion population			string			2	H+		
ionType2	Second ion population			string			None		H+		-
Add Remove	save a	and quit									

Jython Log

Crandard Log Number of narticles reflected on symmetry boundaries : 0.

Electromagnetics & Space Environment Division – TEC-EES

UCONSOLE

SIMPLIFIED STANDARD MEO/GEO TOOLS FOR SPACECRAFT CHARGING

- TRP (100-200kEuro)
- Initiated
- Objectives: To develop a tool for the evaluation of surface electrostatic charging that can be used without specialized training and which guides user in making appropriate choices for GEO/MEO application
- Description: A user-friendly tool will be developed using software components from the SPIS. It will include standard plasma environment, material property lists, and will allow 3-d geometrical models to be created. The tool will allow for a high degree of automisation of parameters needed to make the code run but which do not reflect real physical inputs, e.g. mesh resolution, particle weights, time-steps. The code will be extensively verified using available data. User and data interfaces will also be produced.

THE END

Electromagnetics & Space Environment Division – TEC-EES