SPIS-GEO preliminary study

Feasibility study of SPIS adaptation to geostationary orbits and to its usage in industrial context

> Benoît Thiébault⁽¹⁾, Julien Forest⁽²⁾ Contact : <u>thiebault@artenum.com</u> Supervised by Denis Payan⁽³⁾ CNES Contract: DAJ/AR/PS N°08-9852 (1)Artenum, Toulouse (2)Artenum, Paris (3)CNES

- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models

Objectives of the study

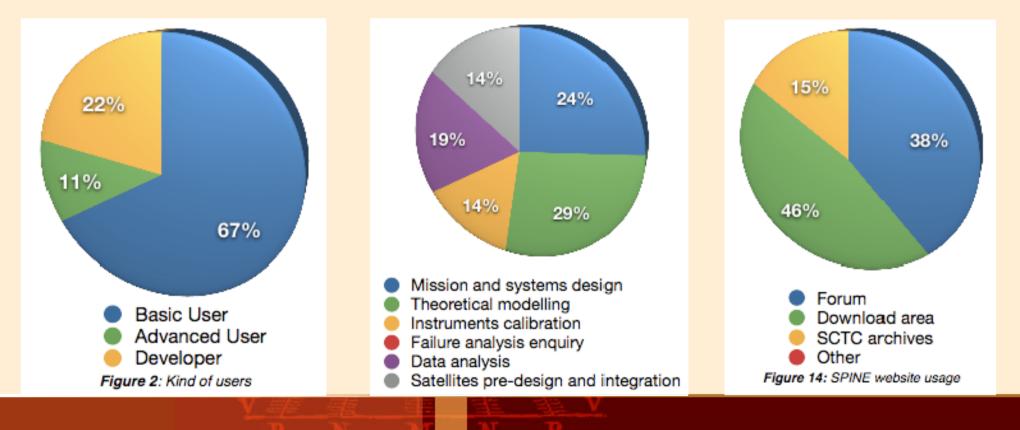
- Objectives:
 - Define SPIS future evolutions in order to increase the use of SPIS in the industry:
 - Simplify usage for non-experts users
 - Extension to industry-specific issues (Geostationary orbit, modern and complex commercial platform, electric propulsion)
- Two steps:
 - Gather SPIS users feedback and future users wishes
 - Community analysis (forum, survey) and interviews
 - Industrial users (and non-users) interviews
 - Define new requirements based on:
 - Users feedback
 - Bibliographic studies
 - Existing codes overview and critical analysis
 - Technological watching and analysis
 - Prototyping and tests

Study output

- A consistent set of documents:
 - Deliverable #1 / Users feedback and application scenarios
 - Deliverable #2 / Numerical models identification report
 - Deliverable #3 / SPIS architecture analysis
 - Deliverable #4 / SPIS-GEO software requirements
 - Deliverable #5 / Platform migration analysis
 - Deliverable #6 / Client/Server or Service Oriented Architectures analysis
 - Deliverable #7 / Effort and budget estimates
 - Deliverable #8 / SPINE community management strategy and business models
 - Deliverable #9 / Final Report

- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models

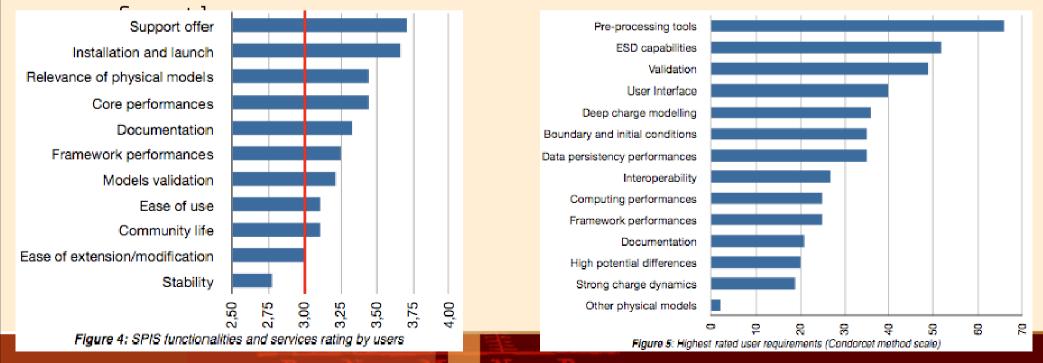
SPINE Community


- http://www.spis.org
- About 219 registered persons and a large ten of active members
- SPINE meeting every 6 months
- An active forum
 - 90 threads (i.e. subjects)
 - \circ 250 message in less than 42 months
 - Average 6 messages a month.
- Downloads
 - 3.1 (all versions): about 185
 - 3.6 (all versions): about 347
 - ⊙ 3.7 (all versions): about 80 (no announcement done)

- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models

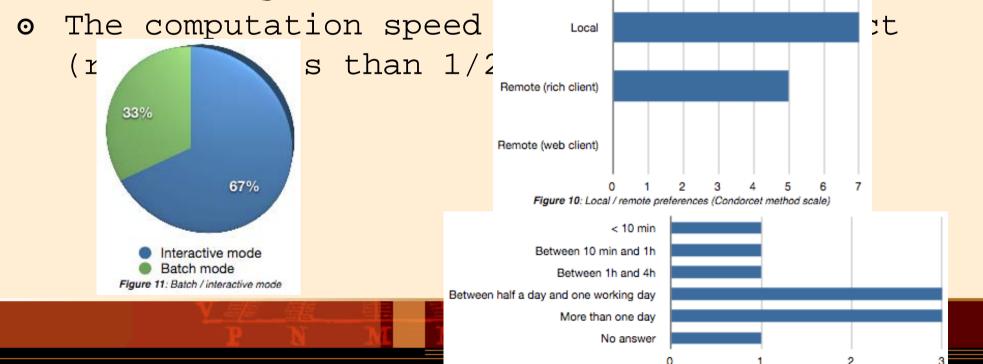
Users feedback (1/5)

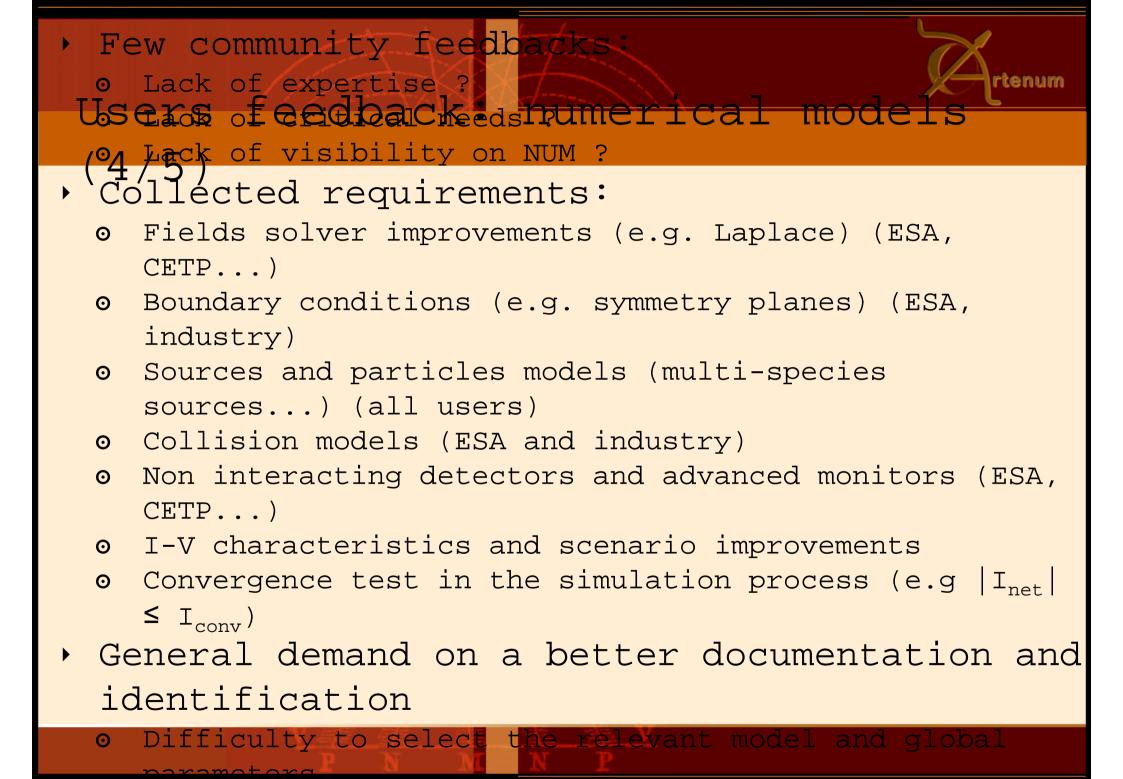
• Usage


- Majority of basic users
- Mainly used for mission design and theoretical modeling

tenum

- Perceived stability and ease of use (especially for pre-processing) are the main demands for evolutions
- Pre-defined simulations for the most relevant cases are very important
- Need of scenarios
- Interoperability with other tools is not a priority




Caution: evaluation done on the basis of SPIS 3.6

Remote access and computation speed Users figed backainly used locally on basic

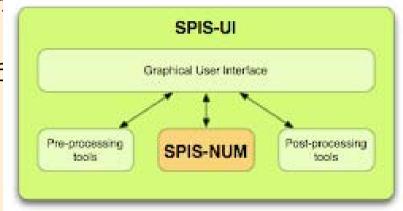
desktop computers.

- However, increasing use of SPIS in both modes (local, client-server)
 - Increasing interest use of SPIS in Intranet clientserver mode
 - Web-based version is not a priority but an interesting future

Users feedback (5/5)

- Main feedbacks from users and future users
 - Easier pre-processing and configuration
 - Improved stability
 - New models
 - Pre-defined scenarios
 - More active community

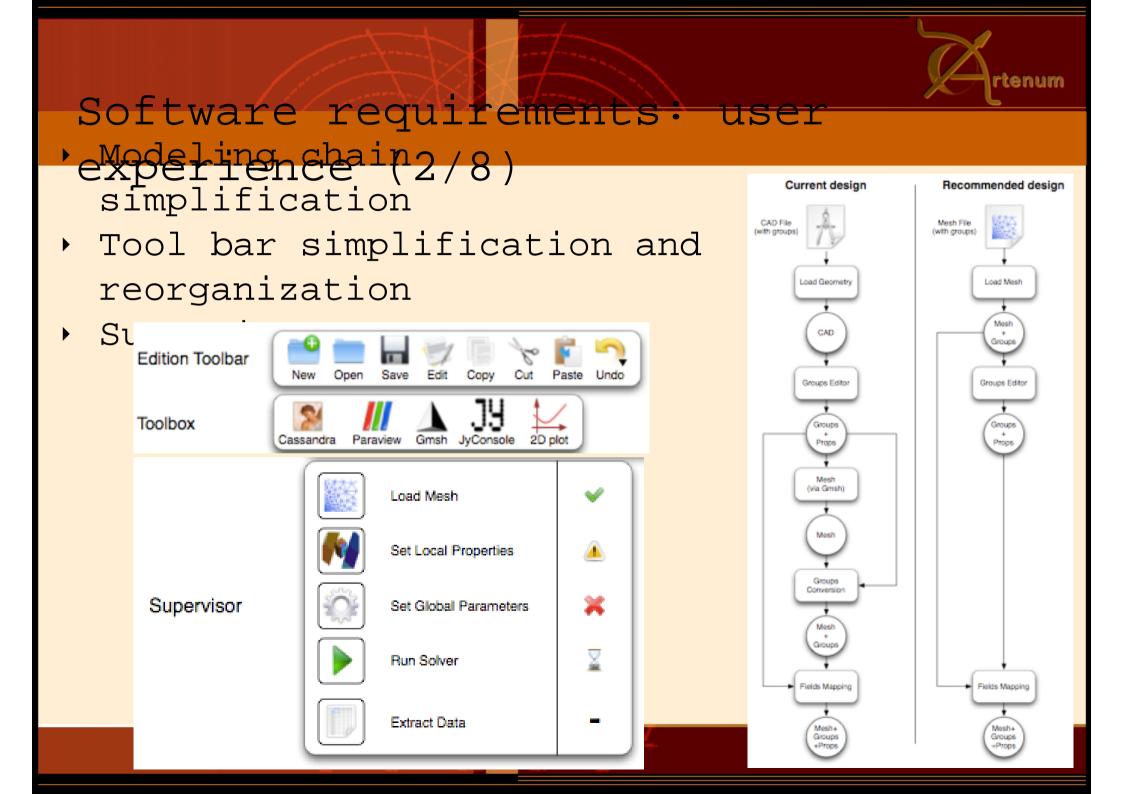
- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models



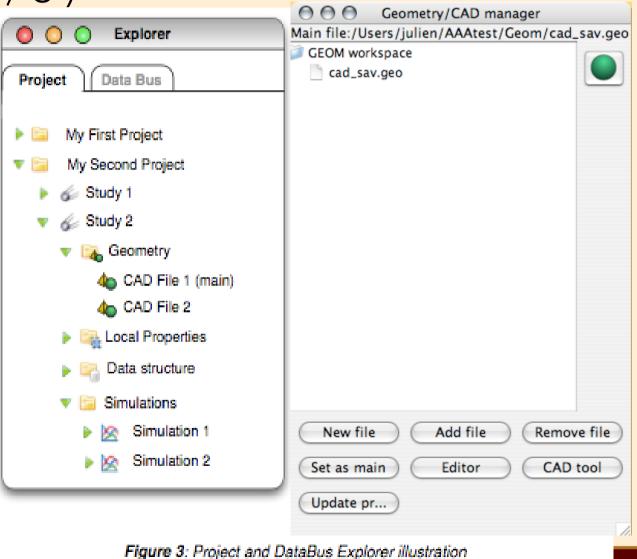
SPIS-UI architecture analysis

- Some points to improve
 - Confusing packaging and part of dead codes
 - Imperfect respect of development
 - Too intensive use of Jython
 - Data Model and TaskManager re-f
 - Persistency scheme refactoring
 - Global re-factoring needed

However:

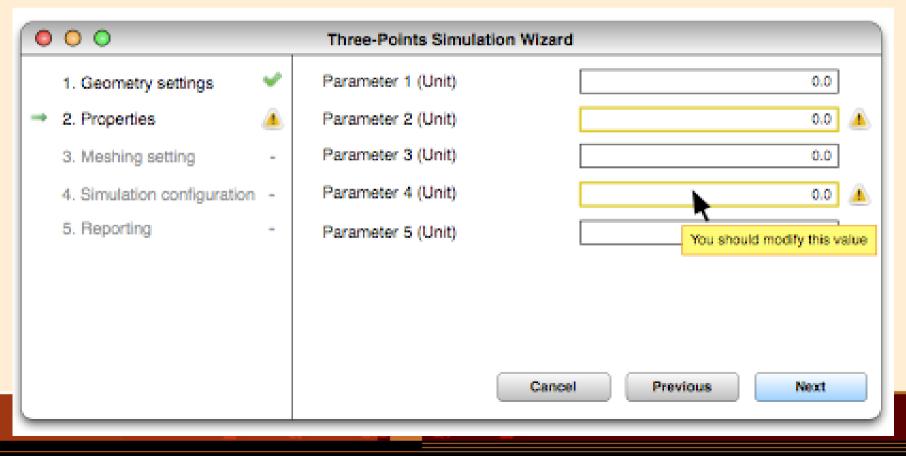

- ${\bf o}$ Modular and simple design
- Global respect of canonical design patterns (e.g MVC)
- Multi-threaded design very well adapted to multi-cores processors
- Integration of an advanced TaskManager at several UI levels (GUI, batch...)
- A lot of improvements and cleaning done in the 3.7 RC9 version and since

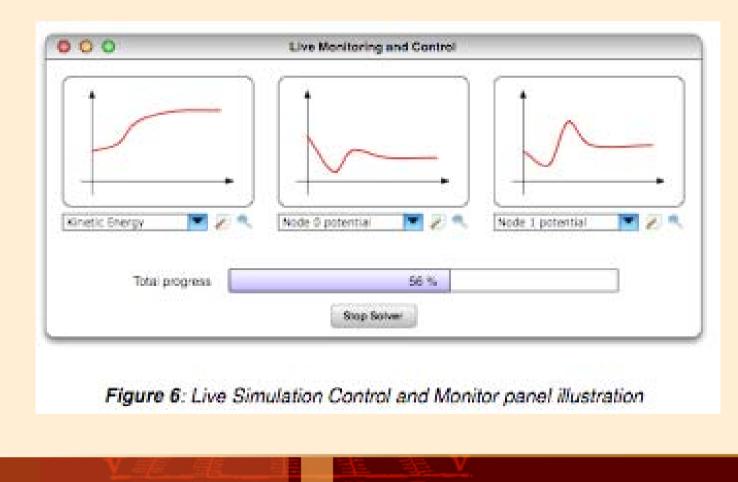
- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models


, Spifghyghertablei(thanksted thertageility (appedach)

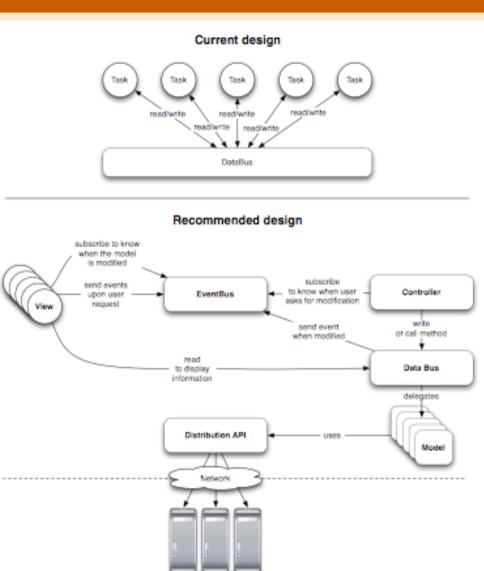
- ⊙ Apple OS-X 32/64 bits, G4/G5/Intel Core 2 Duo
- o Linux (Suse, RedHat, Sarge, Ubuntu...), 32/64 bits
- AMD/Intel Windows 2000/NT/XP, 32 bits
- AMD/Intel SUN Solaris 10, 32 bits, AMD/Intel
- Remaining OS dependency due to native components (e.g VTK)
 - Possibility to define a "minimal core" without native components and a plugins manager to dynamically load native components
 - Simplified packaging with a distribution for each targeted platform
 - Web-based client deployment

Software requirements: user


- expensiencerer 3/8)
- Mesh checker
- Improved geometrical modeling manager
- Predefined shapes
- Improved CAD
 format import =>
 no format appears
 in the industrial
 community (STEP
 is not a widely
 used yet)
- Improved external
 CAD tool (other than GMSH)


tenum

• Levels of modeling complexity

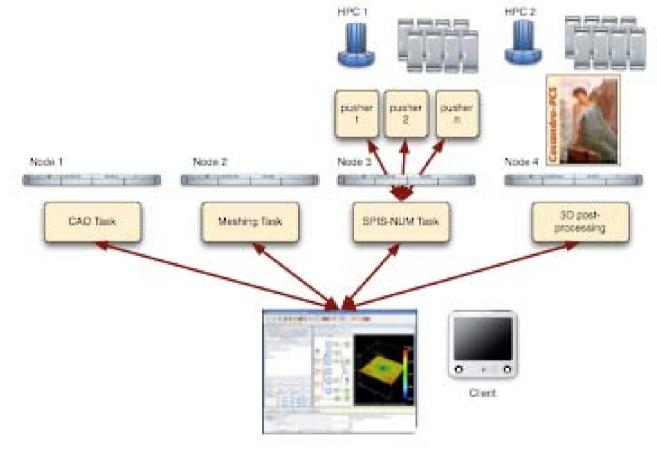

Software requirements: user experience (5/8) • Live simulation control and monitoring

tenum

Software requirements: stability (6/8)

- Improved and common error management
- Code cleaning
- Full Java migration
- Global
 refactoring

rtenum


Figure 8: Recommended improvement of data access

Software requirements: Client

Server design (7/8)

- Introduce a distributed design to make benefice of modern clusters and HPC
- Reduce the memory cost at the UI to NUM conversion and address larger systems (grid and number of particles)
- Increase the particles number to improve the statistic
- Computation loop parallelization. Several approaches possible:
 - ProActive library
 - Service Oriented Approach (SOA)
 - Web services
- General evolution in HPC domain

Software requirements: Client Server design (8/8)

rtenum

Figure 12 : Example of distributed architectures, based on the results of experimentation done in the ANR/

SCOS-V3D and ANR/Scorware projects.

- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models

Platifoirmbanie grating del (1/19/2) a mework or

Integrated Modeling Environment (IME).

- Practically, the problematic of a scientific modeling framework outlines several issues:
 - A generic GUI layer
 - A tailored layer or Data Bus, specific to scientific application, to shared scientific data, like meshes, fields and parameters
 - Controlling and supporting external tools
 - Common tailored tools, like 2D/3D viewers and data converters.
- Platform migration should be investigated because:
 - SPIS-UI is mainly supported in the SPINE (small) space related community
 - Currently difficult to maintain (at least for nonexperts)

New solutions are available

Platform migration (2/2)

- Developed their own CAD lib based on VTK and CSG description
- Developed their own Data Model in pure Java
- Developed their own GUI in pure Java/Swing
- Scilab:
 - Evaluated Eclipse RCP and Netbean
 - Finally developed their own framework, because better adapted GUI
 - Use components of Keridwen/SPIS-UI (JRosetta, 3D postprocessing)
- Platforms evaluated:
 - Eclipse RCP: too complex, too costly and too risky
 - Netbeans: too complex and too costly (best on the long time range)
 - Keridwen: easy to do, low cost, less risk, but

small community (easier to reach in the frame of

- Objectives of the study
- SPINE community
- Users feedback
- SPIS-UI architecture analysis
- Software requirements
- Platform migration
- Community life and business models

Communityferiand business models

• _Number of downloads

(1 Jumber of scientific papers produced and studies performed with SPIS

- Activity on the forum
- Active members present to the SPINE meetings
- http://www.spis.org is used by the community

But:

- Lack of visibility of the SPIS road map by the community
- Lack of coordination/information exchange about SPIS use and settings
- Lack of identification of the steering comity/lack of responsibility of members
- Sub-critical size of a very targeted and space related community
- Difficulty to maintain the code in an Open Source approach
- Critical economical equilibrium without the support of agencies
- Difficulty to introduce the most up-to-date software technologies

Most of these points have been outlined in:

• ESA/Open Source Software Study (See Juan Miro)

Community life and business models

- (SBINE has a real and active life today
- A Numerous members, including from outside the initial community
- SPIS used by industrial as well as academic
- SPIS included as reference in several calls to tender
- SPINE community life and difficulties are consistent with general results of the ESA-OSS Study (R.Ghosh et. al.), United Nations University / UNU-MERIT, regarding scientific open-source projects:
 - Thematic communities structurally too small (typically about 100 users over the world)
 - Maintenance cost of OSS remains de facto very high (prohibitive in fact)
 - Difficulty to maintain the expertise
 - Difficulty to develop the market, that remains small
 - Difficulty to maintain the long term effort (lack of community life and development road map coordination)
 - Increasing need of quality assurance (validation, calibration)
 - Still need a pro-active and coordinated action of main actors (e.g. agencies, main industrial actors)
 - Only a couple of major actors and few contributions
 - Funding difficulties

Same conclusion for most of the scientific OSS (e.g Scilab)

Community life and business models

1 Homever SPIS and SPINE present several assets and actions

- Compliant with the OSS study recommendations:
 - SPIS begins to be used for spacecraft charging or space related applications:
 - Electrical propulsion
 - Electronic components characterization
 - SPIS hasseveral of its common components mutualised with other projects and outside its initial community and the space related community
 - SPIS-UI/Keridwen is an active part of the ANR/SCOS project
 - Cassandra post-processing engine part of the ANR/SCOS-V3D and ANR/Coll@viz projects
 - JyConsole/JRosetta, the script console, included into Scilab
 V5 and integrated as standard package into most of the current Linux distribution (RedHat, Debian)
 - Stabilised and growing expertise (large ten of experts in EU)
 - But, still:
 - These elements are not direct effort providers
 - Components mutualisation is more difficult to achieve for numerical models and tailored components
 - Sub-critical economical context
 - Lack of visibility of the community

Community life and business models

Recommendations:

- Reinforce the SPINE community structure and coordination
 - An official status for the SPINE (e.g consortium or association)
 - Better clarity and transparency of the SPINE leading
 - Source of funding Scilab consortium model: about 2000€/member/year fee -> about 20k€/year expected => de facto more active members, because
 - Fee payment
 - Official registration (and image identification)
 - Re-introduction of an official steering comity
 - Better clarity on the SPIS evolutions and roadmap
- Reinforced participation of SPINE (as community) to standardization and inter-operability OSS effort
- Better visibility of the services available supports:
 - As OS actions (e.g forums)
 - As commercial services (e.g better identification of services providers on the SPINE platform)
 - Online services (Web services, remote HPC) to bootstrap the use of SPIS and other SPINE tools

Community milife and business models

5 Industrial users starts to use SPIS or think to use it, but:

- **'d** For most of them spacecraft-plasma modeling remains a subcritic activity (less than 4 man.month by year)
- Difficulty to maintain the in-house expertise
- The easiness to use and the learning curve reduction are critical
- The funding possibilities are strongly related to
 - Easy access to the expertise
 - Low entry price
 - Easy access to the services (e.g online computing)
- Requires a better visibility of the services offer
- Most of them are still in waiting position, i.e "we wait that SPIS is fully developed, validated and stabilized"
- Other projects (e.g Cassandra) have shown that OSS contribution scheme have changed during project
 - No direct contribution because the expertise requirement is too high
 - But private funding for on-demand development, finally reversed to the community in order to mutualise the maintenance cost
 - Requires a better visibility of the software and the road

Concile Pure romanity exists today.

SPIS becomes a real de-facto standard and start to be intensively used

- However, SPIS starts to pay the price of the years
 - Feedbacks of the community and users is very important
 - Evolution of the techniques
 - Contribution possible from other projects
 - Needed re-factoring and evolutions
 - Functional and technical
 - Especially for industrial and engineering applications
- Several technical propositions
 - GUI simplified with a "wizard-oriented" approach
 - Refactoring of the Data Model and better data interoperability
 - Platform migration
 - Distributed and client-server (including Web based) design
 - Component mutualisation with other communities
- Community life and economical models
 - The SPINE community coordination is a key issue
 - The re-factoring of SPIS, especially for GEO orbits, is a priority.
 - The effort is reachable.

Conclusion

Do not hesitate to contact us <u>o thiebault@artenum.com</u>

