

EJSM/JGO Mission Overview

Arno Wielders JGO Payload Study Manager

> SPINE Workshop January 17-19, 2011

JGO Spacecraft Key Properties

- Dry mass ~1690 kg, propellant mass ~2900 kg
- Planning payload 104 kg, ~120–150 W
- 3-axis stabilized s/c
- Power: GaAs LILT solar cells array (>60 m²)
- HGA: >3 m, fixed to body; X/Ka-band, switching data rate
- High Δv requirement, high mass amplification, complex navigations
- Mission lifetime: 9 yrs; 6 yrs transfer
- Thermal: Venus flyby, Jovian system
- Challenges
 - Radiation environment; 150 krad (shielded)
 - Performance of GaAs LILT cells

Configuration ESA CDF, 2008

Launch Mass Constraints

Designing to maximum separated mass

Launch Date	Launch Mass	Dry Mass	Propellant Mass	Transfer Duration
March 2020	4172 kg	1687 kg	2425 kg	5.9 yrs
June 2021	3643 kg	1498 kg	2092 kg	6.9 yrs
May 2022	4641 kg	1701 kg	2872 kg	7.1 yrs
June 2023	3834 kg	1541 kg *)	2238 kg /	6.6 yrs
August 2024	3871 kg	1520 kg *)	2295 kg	7.2 yrs

*) higher dry mass possible with longer interplanetary transfer times **Design point**

JGO Baseline Mission Profile

- Interplanetary transfer
 - Launch 2020
 - VEE Gravity Assist (Venus: 1 Jul 2020, Earth: 27 Apr 2021, Earth: 28 Jul 2023)
 - 5.9 years transfer, $\Delta v = 195$ m/s
 - Jupiter arrival: 4 Feb 2026
- Jupiter orbit insertion (230x13 RJ) and energy reduction (165 + 120 days; $\Delta v = 990$ m/s)
- Transfer to Callisto (57 days; $\Delta v = 56$ m/s)
- Callisto resonances: >9 swing-bys (240 days; $\Delta v \ge 90$ m/s)
- Transfer to Ganymede polar orbit (85 days; $\Delta v = 187 \text{ m/s}$)
- Ganymede elliptical phase 10,000x200 km & 5000 km circular (120 days; $\Delta v = 397$ m/s)
- Ganymede circular phase: 500 km (180 days; $\Delta v = 530$ m/s)
- Ganymede circular phase: 200 km
- Ganymede de-orbit ($\Delta v = 40 \text{ m/s}$)
- Total mission duration: 9 years

Callisto Flyby Phase

- Resonant orbit with Callisto (1:1)
- 9 flybys, each 200 km altitude

- Driven by
 - Avoiding sun eclipses
 - Low altitude
 - Declination of the sun to orbital plane (β angle) is drifting towards higher values

.eesa

	Pericente	Apocenter		
	Altitude	Altitude	β Angle	Duration
Phase	[km]	[km]	[deg]	[days]
Elliptical	200	10,000	30	120
High Circular	500	500	60	120
Low Circular	200	200	76	60
End	200	200	84	n/a

JGO Model Payload

Instrument	Acronym	High level description	
High Resolution Camera	HRC	Spectral range: 350–1050 nm, 12 filters, IFOV: 0.005 mrad	
Wide Angle Camera	WAC	Wide: 12 filters Framing, IFOV: 2 mrad	
Plasma Package (includes part of INMS)	PLP	Plasma Analyzer Electrons: 1 eV – 20 keV, Ions: 1 eV – 50 keV Particle Analyzer: Electrons: 15 keV – 1 MeV Ions: 3 keV – 5 MeV, ENA: 10 eV – 10 keV Thermal plasma number density (Te < 10 eV)	
Radio and Plasma Wave Instrument	RPWI	Plasma Wave: electrons, ions Electric & magnetic field vector, QTNS	
Magnetometer	MAG	Dual tri-axial fluxgate sensors	
Visible and infrared Hyperspectral Imaging spectrometer	VIRHIS	Pushbroom imaging spectrometer with two channels with scan system, Spec. range: 400–5200 nm, Spec. res: 2.8 - 5 nm	
Submillimeter Wave Sounder	SWI	2 channels: Spec. range: 550–230 μm FOV: 0.15° – 0.065°	
Radio Science Instrument	JRST	2-way Doppler with Ka-Band transponder	
Ultrastable Oscillator	USO	Ultra-stable Oscillator	
Ultraviolet Imaging Spectrometer	UVIS	EUV and FUV + MUV grating spectrometers Spectral range: 50–320 nm	
Laser Altimeter	LA	Single Beam @ 1064 nm, 10 m spot @ 200 km 175 Hz pulse rate	
Subsurface Radar	SSR	Single frequency: 20–50 MHz, Dipole antenna: 10 m	

DOI Instrument Studies

- 33 DOI studies for instrumentation (11 instruments in model payload)
- All proposed DOI studies finished (31 August 2010) or still ongoing
- Meetings with instrument teams being held every three months to discuss:
 - Industrial progress
 - Instrument team progress
 - Preliminary interface issues
- Final reports have been delivered on 31 August 2010
 - Instrument design and development report
 - Instrument cost assessment report
 - Assessment of reports finished and feedback send to instrument teams

JGO Additional Items

Instrument	High level description	
X-band tranceiver	Ranging & occultation applications in close collaboration with JEO	
Radiation Monitor	Verification of radiation environment models (during complete mission) & potential warning system for intense radiation events	
Mechanisms	High level description	
Radar Antenna (1)	10 meter long antenna for Subsurface radar potentially accommodating RA-PWI (electric component of high frequency plasma waves) of RPWI	
MAG boom (1)	~ 5 m boom accommodating two MAG sensors and SCM of RPWI	
RPWI-LP-PWI Langmuir probe booms (4)	~ 2-3 m long booms accommodating Langmuir probes	
RPWI-RWI booms (3)	~ 2 m long booms acting as electric monopoles measuring radio waves	
Shielding	High Level description	
Spacecraft	Standard spacecraft structure acts as shielding (highly dependent on location on or inside S/C)	
Equipment level	Box shielding; overall box shielding to reduce dose within	
Component level	Dedicated component shielding for specific medium radiation sensitive components	
Part level	Spot shielding application; highly specific shielding (e.g., bi-polar)	

Instrument Operations

- Spacecraft pointing
 - Baseline is continuous rotation of s/c around yaw
 - Exceptionally stable pointing will be performed, with recovery period Configuration driven by Ganymede remote sensing
- A preliminary instrument operation scenario was derived with the science team
 - Showed that all science objectives could be met
 - Showed that all data fit into available telemetry volume (1 Gb/day)
- Operations of remote sensing and in situ separated in time
 - Instrument power during stand-by/switch off important
- No (or much reduced) instrument operations during telemetry downlink periods

Payload Operations Scenario

- Instruments operations were defined per Ganymede orbit
- Verification of observations and measurements made, data return, science return
- S/c sizing: Power, accommodation

Obs1	Obs2	Obs3	Obs4	Obs5
Remote Sensing	In situ + WAC & LA	Radar + in situ	Radio Science & downlink	Jupiter Monitoring
VIRHIS	WAC	SSR	JSRT	SWI
HRC	LA	RPWI	USO	VIRHIS
UVIS	MAG	MAG		HRC
MAG	RPWI	РР		WAC
LA	PP			UVIS

JGO Model Payload Driving Requirements and esa Critical Issues

- Electromagnetic Compatibility:
 - Electric charging few Volt over spacecraft
 - 0.2 nT DC- 64 Hz magnetic field
 - < 50 dB μ V/m below 45 MHz
- Field of View accommodation & large amount of appendages
- Radiation shielding & radiation sensitivity of scientific measurements in high rad environment
- Potential distortions of antenna beam patterns and effects on scientific measurements
- Resources limited (mass, power and data volume)
- Thermal demands for cooling of detectors

JGO Status

- ESA has finished studying phase 0/A with 3 industrial consortia (Astrium, OHB, TAS)
 - KO in July 2009
 - Completed in June 2010
- 16 Technology Development Activities are currently being implemented
 - All for early risk mitigation, no critical new development needed
- ESA internal review October-November 2010 finished. Report to be published soon.

2.

Spacecraft Configurations

UVIS

JGO Radiation Mitigation

- Total ionizing dose ~85 krad behind 10 mm Al
- Additional shielding with alternative materials (Ta, W) should be investigated
- Design shall aim for 150 krad tolerance
- Shielding
 - Mostly box shielding, some spot shielding
 - 10 mm Al is conservative approach; tailored shielding material may be used
 - ESA study estimated ~80 kg shielding for 104 kg payload and avionics
 - Solar cell arrays currently designed to be covered with 70 μm cover glass
- Combined mitigation approach: shielding and radiation hardened components

Radiation Environment

Planetary Protection Requirements

- Category II + additional requirements
 - Significant interest in processes of chemical evolution
 - Remote probability of contaminating future exploration
- Demonstrate probability of contaminating the Ganymede subsurface ocean $\leq 10^{-4}$
 - Investigating timescales and transport properties of surface processes
- Contamination of Europa ocean $\leq 10^{-4}$
 - Probability of accidental impact on Europa (reliability)
- Probability of impact launch vehicle on Mars $\leq 10^{-4}$ for 50 years after launch
 - Probability of accidental impact as a consequence of failure
- Planetary protection plan will be compiled and reviewed

Programmatic Constraints: ESA

- Cosmic Vision L-Class down selection (3 → 2): June 2011
 - ITT for definition phase and instrument AO will follow that
- Start of Definition Phase: Q4/2011 (duration 16 – 18 months), until Q2/2013
- Mission adoption in Q2-Q3/2013
- ITT and negotiations in Q3-Q4/2013
- KO implementation phase: 1st semester 2014

Instrument AO Preparations

- Discussions about a coordinated AO with NASA are progressing
- Schedules should be such that payload can be selected jointly
- Schedules of ESA and NASA are reasonably aligned
- ESA's Instrument AO will be issued after down selection

Outlook & Programmatics

- L-Class down selection and position in the Science Programme: decision to be made in June 2011 by SPC meeting
 - All L missions are in collaboration with NASA and some with JAXA
- Evaluation process:
 - Independent reviews on science, technical and programmatics
 - Review on ESA elements (or potential ESA elements, if ESA/NASA respective contributions are not frozen)
 - DOI instrument reports assessment and recommendations
- Public presentations day 3rd February 2011, Paris.
 - Presentations by IXO, LISA and EJSM; science and mission concepts
- Down-selection June 2011, quickly followed by ITT for definition phase and Announcement of Opportunity for payload (tentative)