Cassini LP photoelectron calibration and its use

Michiko Morooka, J.-E. Wahlund, M. Holmberg, and K. Gwosch (IRF Uppsala)

Cassini Langmuir Probe

mounted:

- -X direction of SC
- 1.5m away from SC

$I = I_{ion} + I_{electron} + I_{photoelectron}$

In a magnetospheric thin plasma, photoelectron characteristics is dominant.

 $I_{ion} \sim 1.10^{-10} [A]$ If the ambient plasma becomes hot or dense, I_{ion} significant but still $I_{phototelectron}$ must be calibrated.

Rev 20 (2006)

IP

U_{float} S/C attitude correction

U_{SC} in Saturn's Magnetosphere

Equatorial U_{SC}

 Plasma Disk (<11-14 R_s) : < 0V</td>

 Beyond 11-14 R_s :
 > 0V

 High N_e :
 + few V

 Low N_e :
 +15-40V

Z-dependence:

Lobe regions: +25V to +60V SW: + few V

N_e in the Kronian magnetosphere

Ne in the Kronian magnetosphere

Iphoto calibration for <V (ion side)

Linear correlation with solar EUV intensity (F10.7).

LP current in dusty plasma

Photoelectron calibration for LP

U_{float} (U_{sc}) calibration

- S/C attitude, and Sun UV, solar wind condition
- Very useful to measure N_e
- \bigcup U_{sc} can be used as proxy to the charged dust potential
- Additional calibration to understand?
 - High energy particle effect
 - EUV reflected by spacecraft antenna

Iion calibration

S/C attitude, and Sun UV, solar wind condition

