

Simulation needs for EJSM/JGO in the light of Cassini experiences

J-E. Wahlund Swedish Institute of Space Physics, Uppsala

• EJSM/JGO & RPWI consortia

- LP capability
- Near DC E-field capability
- Cassini RPWS/LP experience
 - Several electron "populations"!? Anisotropy?
 - Secondary electrons from energetic particle impacts
 - Secondaries from dust impacts
 - Dust-plasma effects (charged dust, sheath effects, ...)
- Guidelines for SPIS development

SPINE WS, Uppsala, 2011

Radio & Plasma Wave Investigation (RPWI)

S/C Modelling support for RPWI Sensor accommodation

- Potential patterns
 - fr. C. Cully code
- Wake & S/C photo-e⁻ patterns
 - fr. SPIS applied to ROSETTA
 - Only SW conditions

Wake pattern in Solar wind

Photo-electron density in solar wind

- Baseline: Four 3m booms on S/C body
- Preferred (Sci. performance) option: Four 1m sticks at tip of solar panels

Include photo electrons)

Include mobile & time variable S/C structures

RPWI Science Performance

Measured Quantity	Range]										
<u>LP-PWI</u> Electron density (n _e , δn/n) Ion density (n _i) Electron temperature (T _e) Ion drift speed Ion temperature upper limits Spacecraft potential	$10^{-4} - 10^{5}$ cm ⁻³ , 0(DC)-20 kHz $1-10^{5}$ cm ⁻³ , <1 Hz 0.01 - 20 eV, <1 Hz 0.1-200 km/s, <1 Hz 0.01 - 20 eV, <1 Hz ± 100 V, <1 Hz		10	⁴ [Cha v= 1 k v= 10 v= 300	m/s km/s km/s km/s	stic sca	ales (encounte	red by EJSI	WJGO	
Electric field vector, $\delta E(f)$	DC – 1 MHz (waveform), ±1 V/m Bit resolution: 0.015 mV/m		10	2 f _{ci}						Ion/Fluid	Fluid/MHD Physics	SCM
Integrated solar EUV flux	Resolution 0.05 Gphotons/cm ² /s	ale [s]	10	• _{f_L+}	1				Ion Physics	coupling [LP-PWI	
<u>MIME</u> Electron density (n _e) Electron temperature Electric sensor calibration	$0.01 - 1.5 \cdot 10^5 \text{ cm}^{-3}$ 0.01 - 100 eV	Time sca	10	-2 f _{pi}]			Floor	4			
Effective antenna length of sensors Deployment length of sensors			10			Electr Physi	on cs	cuj	pling		RA-PWI	¥
<u>RWI</u> Electric field vector, δE(f)	100 kHz – 45 MHz		10	-5		/			Radio		RWI	, ↑
<u>SCM</u> Magnetic field vector, δ B (f)	0.1 Hz – 20 kHz Sensitivity at 1 Hz: 8 pT/ \sqrt{Hz}		10		10-4	e- gyro Debye	length		10 ⁰	ion gyro radiu	10 ⁴	MLA
	Sensitivity at 10 Hz: 0.06 pT/ $\sqrt{\text{Hz}}$ Sensitivity at 100 Hz: 0.06 pT/ $\sqrt{\text{Hz}}$ Sensitivity at 1 kHz: 10 fT/ $\sqrt{\text{Hz}}$ Sensitivity at 10 kHz: 4.5 fT/ $\sqrt{\text{Hz}}$							Sp	atial scale	[km]		(opt)
<u>RA-PWI</u> Electric field, δE(f)	1 kHz – 45 MHz			Ţ	Wid	e rar	ige (of	plasm	a cond	itions!	
<u>MLA (opt)</u> Magnetic field component, δB(f)	100 kHz – 45 MHz Sensitivity at 1 MHz: 0.3 fT/√Hz											

Near DC (sub Hz) E-field capability

- "EJSM Electrostatic cleanliness"
 - The potential difference between any two surfaces on the S/C shall not exceed 1 V, assuming an ambient current density to the surface of 2 nA/cm².
 - Max error: 6-7 mV/m for long Debye lengths
 - Jupiter convection field near Ganymede = 10-20 mV/m (< 1 V over S/C)
 - The ability of LP-PWI to measure magnetospheric convection fields requires a **conductive S/C surface**
 - Denser plasma near Ganymede \rightarrow short λ_D (30 cm 1m) \rightarrow better than 1 mV/m accuracy
 - Solar panel mounted sticks + sensors improve by at least a factor 5 (longer separation distance & less photoelectrons from S/C & more symmetric configuration)

Alfvén Waves & Plasma flows

 $\delta \mathbf{E} = \mathbf{V}_{\mathbf{A}} \cdot \delta \mathbf{B} \approx \mathbf{few} \ \mathbf{mV/m}$

Fraction of a Volt over the S/C!

- S/C simulations for a wide range of external plasma conditions
- Include v×B and other large scale electric fields (for non-conductive S/C surface)

RPWI Thermal plasma capabilities

Electron/Ion number densities

- LP bias voltage sweeps (both electrons & ions)
- Monitor f_{UH}
- Monitor U_{float} (proxy method)
- Continuous sampling of probe current (incl. $\delta n/n$)
- Active mutual impedance
- Electron temperature
 - LP bias voltage sweeps
 - Active mutual impedance
- Ion drift speed
 - LP bias voltage sweeps
 - Near DC E–field (convection E×B)

LP capability to measure thermal plasma

S/C photoelectrons (fr. ESA SPIS)

- Worst problem for $U_{SC} > 0$, less for U_{SC} negative

Assumed: ±100 V sweeps 10 pA noise level

Situation will improve if

- LP-PWI sensors on tips of solar panels
- 1 pA noise level reached

Include (ion) ram component

- $m_i V_{ram}^2/2 >> k_B T_i$
- V_{SC} large
- Especially in eclipse cases
- Include wake effects

Cassini RPWS LP

5 cm diameter probe

Obvious notes:

- Very close to S/C (1.5 m)
- Many asymmetric structures nearby
- Will be within S/C sheath except for very dense plasma conditions
- Designed for Titan's ionosphere
- Turned out it could do much more

Saturn Plasma Disc measurements

 $N_e = 5 - 150 \text{ cm}^{-3}$ $T_e = 0.5 - 8 \text{ eV}$

E-ring dust Effects of energetic particle impacts (few 100 eV electrons)

Plasma Disc T_e

Gustafsson & Wahlund, PSS, 2010

Probe in S/C Sheath Effect? [Olson et al., 2010]

• Titan plasma wake

- Extend several R_{Titan}
- Cold plasma of ionospheric origin
- Anisotropic T_e in Titan's plasma wake/exo-ionosphere?
- Small Debye lengths

- Include magnetic field (B)
- Include anisotropic T_e
- Include case with LP within S/C sheath
- Include "weird" S/C configurations giving anisotropic potential patterns (e.g., booms, landers, antenna, thrusters ... etc)

Effects of energetic particles

■ Secondary e⁻:s fr.

- S/C
- Probe

- Include secondary electron (& ion) emissions due to energetic particle radiation
 - Fr. S/C
 - Fr. LP
- Include different energetic particle distribution functions (energy & pitch-angle)
- Include different surface material possibilities

Include dust-plasma with significant charge partition on the negative dust

 $- N_e + Z_d N_d = N_i$

- Effect on S/C sheath
- Include collisions (effect on sheath)
 - With neutrals
 - With charged dust
 - Between electrons & ions

Overview: Enceladus E03 Encounter

Enceladus far plume

- Optimum fit (magenta):
 - $N_e = 43 \text{ cm}^{-3}$, $N_i = 490 \text{ cm}^{-3}$
 - Assuming ion density correct (green)
 - Assuming electron density correct (cyan)
 - Hardly reach I_{ph} levels
 - $I_{sec} \approx 10 \text{ nA} = \text{const}$
 - can not explain shape of characteristic
- LP characteristic must be due to thermal ion population

Enceladus central plume

- Electron current saturates!
 - $0.5 2 \ \mu A (!)$
 - No question about that a very dense plasma exist here

$$I_{e0} = A_{LP} n_e q_e \sqrt{\frac{k_B T_e}{2\pi m_e}}$$

- $N_e[cm^{-3}]$ √ $T_e[eV]$ ≈ 5000-10000
- Ion current huge (0.1-0.3 µA)
 - $I_{sec} \ll$
- Saturation occurs near U_{float}≈ +1 V
 - Short Debye length necessary
 - Collective effects

- Include secondary e⁻ (& ions) from impacting dust
 - On S/C
 - On LP
- Include case where major part of negative charge is situated on dust (dust-ion plasma)

U_{SC} in Saturn's Magnetosphere

Equatorial U_{SC}

- Plasma Disk (<11-14 R_{s}) : < 0V
- Beyond 11-14 R_S: > 0V
- High N_e: + few V
- Low N_e: +15-40V

Z-dependence:

- Lobe regions: +25V to +60V

SW

- SW: + few V

Enceladus far plume

Contribution from secondary electrons will make ions colder & slower ! [see also *Jacobsen et al.*, 2009]

U_{bias} [V]

E-ring plasma

U_{bias} [V]

