

SPIS status

SPINE Workshop, March 7, 2012

retour sur innovation

SPIS context and project overview

- SPINE (Spacecraft Plasma Interaction Network in Europe) community setup around year 2000 (A. Hilgers, J. Forest, JF Roussel...):
 - An idea was born: gather European efforts for SC-plasma interactions
 - Exchange: knowledge, data, codes, results...
 - Boost the development of a common simulation toolkit: ESA ITT in 2002 => SPIS

ONERA

- SPIS Development (Spacecraft Plasma Interaction Software) :
 - Initial development: 2002 2005
 - ONERA-Artenum consortium
 - ESA/ESTEC TRP contract
- Solver enhancement: 2006 2009
 - Mostly ONERA
 - ESTEC ARTES contract, French funding
- Other
 - Some community developments
 - Some CNES-funded enhancements (EP, ESD)
 - ESD triggering modelling (ESA TRP) 2010
- 2011 : SPIS version 4.3.1

SPIS on-going activities

- at ONERA and ARTENUM
 - SPIS-SCIENCE
 - Development of a "Computational tools for spacecraft electrostatic cleanliness and payload accommodation analysis
 - Next slides
 - SPIS DC-Deep Charging
 - Development of an Internal Charging solver in the frame of the ELSHIELD project
 - Presentation by P. Sarrailh (ONERA)
 - SPIS-GEO
 - Development of a "Simplified Standard MEO/GEO Tools for Spacecraft Charging"
 - Presentation by J. Forest (ARTENUM)
 - SPIS-Maintenance (ESA TRP)
 - "Winter School" on SPIS use
 - in conjunction with this SPINE WS
 - 2 training sessions of 10-12 students (1st one was yesterday; next is tomorrow !)
 - Definition of non regression procedure : ~10 "basic" spis test cases provided to the community

ONERA

- And also
 - SPIS-PROPU
 - Improvements in SPIS in the frame of AISEPS
 - Presentation by M.Wartelski (Astrium F)

SPIS-SCIENCE progress

SPINE Workshop, March 7, 2012

ONERA : ARTENUM : IRF : IRAP : ESA: J.-C. Matéo-Vélez, P. Sarrailh, J.-F. RousselJ. Forest, B. Thiébault, B. RuardA. ErikssonV. GénotA. Hilgers

THE FRENCH AEROSPACE LAB

ONERA

retour sur innovation

Outline

- Overview of the activity
 - Scope
 - Objectives
- Work progress
 - User requirement from scientific community for missions modeling
 - SPIS-SCIENCE tool
 - Overview of main features
 - Some details on progress and work to be performed
 - Validation campaign
- Summary

Overview of the activity

Scope

- ESA/ESTEC contract 4000102091/10/NL/AS
 - Technical Officer: Alain Hilgers
 - Partners: ONERA, ARTENUM, IRAP, IRFU
- Long-term scientific program of ESA has planned missions dealing with plasma measurements
 - Solar Orbiter, Juice (Jupiter)
 - Relatively low energy (few eV) plasma measurements
 - Electrostatic cleanliness becomes very important
- Objectives
 - Provide a computational tool able to predict quantitatively
 - The charging of a S/C
 - The space charge in its environment
 - Their consequences in low energy plasma measurements
 - Outputs for the user (= scientific community)
 - New version of SPIS software
 - · Validation test cases related to the scientific mission conditions
 - One year maintenance

ONERA

and descent on a subscription of the

Scientific missions modeling – User requirements

- User requirements for an upgraded SPIS
 - From past experience of ESA and consortium
 - Organization of a SPINE WS at Uppsala, Jan 2011, to collect UR from the relevant science community
 - ~ 50 attendees from scientific univ. or instit., space industry, agencies
 - ~ 25 presentations
 - Plasma physics modeling, particle and plasma instruments, flight measurements, mission needs, SPIS use and limitations ...
 - Exhaustive and not limited user requirements list
 - Detailed requirements on phenomena modeling

Work in progress

metroscontametroscolo (

Work in progress

Distribution functions

- Only bi-Maxwellian environment in Spis 4.3.1
- Work progress : Generic distribution functions
 - Generic 3D sampler and isotropic samplers
 - User-defined df : tabulated files
 - Analytical laws can also be implemented
- Work to be performed
 - Implement analytical df: kappa, drifting maxwellian for ambient
 - Implement user-defined isotropic df for secondary electron emission and photoemission process

Boundary conditions

- Upgrade of particle injection
 - Non-zero electrical potential at external boundaries → disturbed plasma → change of the injected distribution function
 - Validation: better accuracy in the case of a spherical probe immersed in maxwellian plasma (error<1% instead of 3-5 % in previous version))

Quantity	Value		
Temperature	0.5 eV		
Electron/ion density	6,91×10 ⁸ #/m3		
Debye length	0.2 m		
Potential	[0-5 V]		
Sphere radius	0.1 m		
Number of tetrahedrons	~42,000		
Simulation box diameter	1.0 m		
Number of macro- particles	~500,000		

Boundary conditions

- Electrical potential
 - Automatic and local shift between two regimes
 - If the external box is outside the sheath : pre-sheath model $\phi \sim 1/r^2$
 - Else : vacuum-like condition $\phi \sim 1/r$

V cross B field

- Magnetically induced electric field
 - Spacecraft motion in a magnetic field \rightarrow change of electric field $\mathbf{E'} = \mathbf{E} + \mathbf{V}_{sc} \otimes \mathbf{B}$
 - Chosen implementation : mix of the 2 referential frames
 - Poisson equation in R of plasma
 - BC on spacecraft due to Hall effect $\phi = \phi' + (\mathbf{V}_{sc} \otimes \mathbf{B}) \cdot x$
 - Particle dynamics in R' of spacecraft

 $\dot{x}' = v'$

V cross B field

- Illustrative example
 - Spacecraft in LEO
 - B~5e-5 T, V ~7500 m/s, L~10 m
 - Potential drop of ~4V

- Verification case
 - Correctly fits PTetra code: Marchand, IEEE Trans. Plasma Sci. 2012 (solved in R' of SC)

Quantity	Value		
Temperature	0.2 eV		
Electron/ion density	2,8×10 ¹⁰ #/m3		
Debye length	0.02 m		
Sphere radius R	0.02 m		
Number of tetrahedrons	~40,000		
Simulation box diameter	0.20 m		
Number of macro- particles	~500,000		
Bz	3×10 ⁻⁴ T		
Electron Gyro Radius / R	0.18		
Ion Gyro Radius / R	7.6		
Spacecraft velocity Vy	- 7500 m/s		
Floating potential	~ - 0.4 V		

-4.00e-05

Self-shading

• In conjunction with SPIS-GEO

Transitions

- · As of today: simulation with constant parameters
- New SPIS capability : Transitions
 - Parameters modified within the course of the simulation
 - User defined transition from
 - Global parameters for generic inputs (e.g. number, type of transitions)
 - ASCII files for dedicated inputs (e.g. sun flux change for an exit from eclipse)
- Spinning spacecraft
 - Change of sun flux (implemented) and plasma injection (not impl. yet)
 - Inputs: spin axis and angular velocity
 - Academic example of a spacecraft in GEO

0

SC (and rear side of SA)

kapton patch

Transitions

- Eclipse exit
- source1.4 (H+) density, at t = 1.2e-5 s 7.21e+11 1.44e+12 2.16e+12 2.88e+12 0.00 see SPIS-GEO presentation • Plasma source activation 0,035 0,03 0,025 Argon ion 0,02 Electron 0,015 current, A Xenon ion 0,01 source1.4 (H+) density, at t = 3.0e-5 s 1.64e+13 3.28e+13 4.93e+13 6.57e+13 Proton 0,005 ж 0.00 0 MANY THE REPORT OF THE PROPERTY OF THE PROPERT - Argon ion -0,005 Electron -0,01 Xenon ion -0.015 Proton -0,02 0,0E+00 1,0E-05 2,0E-05 3,0E-05 4,0E-05 time, s

ONERA

Monitoring CPU time

- Information on computational cost of SPIS numerical solvers
 - During the simulation
 - Summary at the end:

```
|-- End of SPIS numerical simulation --|
I-- Task durations
     |-- Task Simulation integration | Cumulative duration :
                                                                  25 MINUTES
     |-- Task Plasma | Cumulative duration :
                                                 24 MINUTES
     |-- Task Plasma/SC Interactions | Cumulative duration :
                                                                  5 SECONDS
     |-- Task SC Circuit | Cumulative duration : 46 SECONDS
     |-- Task Results storing
                               | Cumulative duration :
                                                            4 SECONDS
---
|---- Plasma subtasks
     |-- Task Poisson Solver | Cumulative duration : 131 SECONDS
     |-- Task Move all populations
                                     | Cumulative duration :
                                                                  22 MINUTES
     | At population level-----
     |-- Task Injection of ions1 density component | Cumulative duration :
                                                                             9 SECONDS
     |-- Task Push of ions1 density component | Cumulative duration :
                                                                       5 MINUTES
     |-- Task Move of ions1 density component | Cumulative duration :
                                                                       5 MINUTES
     |-- Task Injection of ions1 current component | Cumulative duration :
                                                                             10 SECONDS
     |-- Task Push of ions1 current component | Cumulative duration : 120 SECONDS
     |-- Task Move of ions1 current component | Cumulative duration :
                                                                     131 SECONDS
     |-- Task Injection of ions2 density component | Cumulative duration : 11 SECONDS
     |-- Task Push of ions2 density component | Cumulative duration : 228 SECONDS
     |-- Task Move of ions2 density component | Cumulative duration : 248 SECONDS
     |-- Task Injection of ions2 current component | Cumulative duration :
                                                                             10 SECONDS
     |-- Task Push of ions2 current component | Cumulative duration :
                                                                      100 SECONDS
     |-- Task Move of ions2 current component | Cumulative duration :
                                                                      110 SECONDS
     |-- Task Injection of photoElec
                                      | Cumulative duration :
                                                                  44 SECONDS
     |-- Task Push of photoElec | Cumulative duration : 210 SECONDS
     |-- Task Move of photoElec | Cumulative duration : 261 SECONDS
     |-- Task Injection of secondElec | Cumulative duration :
                                                                  40 SECONDS
     |-- Task Push of secondElec | Cumulative duration : 223 SECONDS
     |-- Task Move of secondElec | Cumulative duration :
                                                          268 SECONDS
```

Multi-threading "parallelisation"

- The particle pusher is often the main CPU time consuming calculation
- Multi-threading approach
 - Based on Java Thread class
 - Good scale (ThreadNb vs. CPU time) when the particle pusher is very costly (lots of particle and large integration times)
 - Permit to reduce the cost of particle pushing to the same level as Poisson equation

Scientific Instruments Design

- Plasma Sensors and Particle Detectors
 - Location
 - On single point of the plasma volume
 - On an instrument (possibly virtual)
 - Temporal measurement
 - Regular observations
 - On user demand (interactive mode)
 - Outputs
 - · Distribution functions and first momentum
 - Plasma potential

Scientific missions modeling – Validation cases

- 5 validation cases / 3 missions have been defined
 - Currently under development by specialists of electric field sensor and particle detectors involved in several scientific missions : IRF (Sw) and IRAP (F)

Case	1	2	3	4	5
Scope	Cluster E-field measurements	Cluster electron measurements	Solar Orbiter E-field measurements and wake	Solar Orbiter electron measurements	Cassini electron measurements
S/c relevance	Bepi MMO MMS	Bepi MMO MMS	Rosetta JGO SP+ Demeter	SolO Bepi MPO Rosetta SP+	JGO Rosetta
Plasma conditions relevance	Bepi MMO MMS	Bepi MMO MMS	Bepi MMO Bepi MPO SP+	Bepi MMO Bepi MPO SP+	JGO Rosetta Demeter
Relevant existing databases	Cluster	Cluster	Rosetta	Rosetta Helios Stereo	Cassini
Relevant previous studies	[Cully2007] [Mihljcic2010] [Miyake2011] [Thiébault2003] [Thiébault2004]	[Mihaljcic2010] [Pedersen2008] [Szita2001] [Thiébault2003] [Thiébault2004]	[Engwall2006]	[Ergun2010] [Isensee1981] [Katz2001] [Sjögren2009]	[Jacobsen2009] [Laframboise1974] [Lewis2010] [Nilsson2009] [Olson2010]

Validation Case 1 - Cluster E-field

- Cluster attractive features
 - Complete set of high-sensitivity plasma instruments onboard
 - Large and accessible database
 - Several studies on s/c-plasma interaction
 - High interest from the scientific community
 - Relevance for Bepi-Colombo MMO, MMS, Themis …
- Model
 - Spacecraft, wire booms, spherical probes and adjacent electrical elements
 - From 0.3 mm thickness to 88 m probe-toprobe distance
 - Currents to small bodies crucially depends on test particle tracking
- Comparison
 - Other codes (Miyake2011, Cully-2007)
 - In-orbit study (Mihaljcic2010,)

Validation Case 2 - Cluster electron measurement

- Different conditions
 - Tenuous Solar wind at Earth orbit
 - Dense Solar wind at Earth orbit
 - Polar cap
- Model
 - Electron detectors
- Objectives
 - Quantification of photoemission and secondary emission
- Comparison
 - measurement with PEACE

Validation Case 3 - Solar Orbiter electron measurements

- Objectives
 - Electron instrument (located on an anti-sunward boom)
 - Potential barrier can form around the spacecraft out of combined effects of photoelectron emission and ambient electron density
 - Quantification of the photoemission and of the secondary emission
- Comparison
 - SPP simulations [Ergun2011]
 - Distribution functions obtained by a simulated electron instrument (SWA/EAS).

ONERA

Validation Case 4 - Solar Orbiter E-field and wake

- Objectives
 - Wake effect on the electron instrument
 - Electric potential pattern near the antennas
 - Possibly several solar panel orientations
 - Effect of non-conducting solar panels on electric field measurements

Validation Case 5 - Cassini

- Objectives
 - Current-voltage characteristics of the Langmuir probe

Validation Case 5 - Cassini

- Other objectives still to be defined in detail
 - Influence of photoelectrons and spacecraft potential on electron measurements of RPWS-LP and ELS @ negative and positive spacecraft potential
 - Effect of secondary electron emission on the RPWS-LP bias voltage sweeps
 - Some sweeps [Garnier2011] show a region of negative resistance
 - Direct effect of secondary emission
 - Or Bfield effect and wake effect
- Model
 - Particle detectors and Langmuir Probes
- Comparison
 - A good set of high-sensitivity plasma instruments onboard
 - Large and accessible database, several studies on SC interaction and measurement [Jacobsen2009, Nilsson2009, Olson2010, Lewis2011]

Summary

- Thanks SPINE community for providing ideas of SPIS development and validation cases !
- See you at 12th SCTC and next SPINE WS !

Semi-Transparent Grids

- Useful to model some specific instruments
- Work performed
 - Definition of the STG format: mesh, dependencies of the circuit solver, particle pusher

Particle Detectors Design

Key aspects

 provide good statistics results on small instruments compared to SC

Test Particle (TP) method

• "Frozen" simulation

 Mix of Forward tracking and Backtracking of TP populations Increase statistics on instruments surfaces

Settings

- Pre-defined parameters
- Interaction with the user
 - modify energy range
 - super-particle number

Work progress

• Design of new package

• UI / Instruments / NUM package interfacing

Plasma Sensors progress

ONERA

- · Useful to check the convergence of the simulation
- Work performed so far
 - Numerical routines OK
 - User Interface wizards : still to be implemented