

SPIS-DC activity in the frame of ELSHIELD project

SARRAILH P., MATEO-VELEZ J.-C., ROUSSEL J.-F., FOREST J., THIEBAULT B. SANTIN G., RODGERS D. ONERA ARTENUM ESA

outline

- Context and motivation
- Global workflow and data exchange between tools
- The SPIS solvers dedicated to internal charging
 - Implementation details
 - Solver testing simulations
- Conclusion and perspectives

The ELSHIELD project

Introduction

- Scope
 - ESA/ESTEC contract
 - Technical Officer: Giovani Santin
 - Partners: G4AI (Geant4 Associates International Ltd, UK), TRAD (Tests and Radiations, FR), DH Consultancy (BE), ARTENUM (FR), ONERA (FR), TAS-F(F), INTA (SP) ,TAS-E (SP) (Prime).
 - ELSHIELD = Energetic Electron Shielding, Charging and Radiation Effects and Margins
- Objectives
 - Analyse problems with respect to energetic electron penetration and interactions in spacecraft and their payloads in high flux environments
 - updated and improved industrial tools capabilities supporting the radiation analysis needed to cover GEO/MEO mission requirements

ONERA

ELSHIELD tool ovreview

Tools Interfaces

Internal charging modules in SPIS-NUM

Internal charging solvers in SPIS

- Internal charge transport => Three modes of resolution:
 - 1. The time scheme solver

$$\begin{cases} -\nabla \cdot \left(\varepsilon_{r} \varepsilon_{0} \nabla V\right) = \rho \\ \frac{\partial \rho}{\partial t} + \nabla \cdot J = \dot{\rho} \\ J = \sigma E \end{cases}$$

2. The steady state solver

$$\begin{cases} \nabla . (\sigma E) = \dot{\rho} \\ \rho = -\frac{\nabla . (\varepsilon_0 \mathcal{E}_r \sigma) . E}{\sigma} - \frac{\mathcal{E}_0 \mathcal{E}_r \dot{\rho}}{\sigma} \end{cases}$$

3. Automatic selection mode

Conductivity model (=> Based on DICTAT):

$$\sigma(T, E, D) = \sigma(T, E) + \sigma(D)$$

Bulk conductivity:

$$(T) = \sigma_{\infty} \exp\left(-\frac{\varepsilon_A}{kT}\right)$$

• Field induced conductivity (Adamec and Calderwood):

$$\sigma(T,E) = \sigma(T) \frac{\left(2 + \cosh\left(\beta_F \frac{\sqrt{E}}{2 kT}\right)\right)}{3} \frac{2 kT}{eE\delta} \sinh\left(\frac{eE\delta}{2 kT}\right)$$

• Radiation induced conductivity:

 $\sigma(D) = k_p D^{\Delta}$

- Material properties needed:
 - Activation energy ϵ_A
 - Maximum conductivity σ_{∞}
 - Jump distance δ (fixed at 10Å)
 - Dielectric relative permittivity ϵ_r
 - Radiation induced conductivity parameters $k_{\rm p}$ and Δ

The materials

• XML database dedicated to internal charging simulations:

Material	Density	Dark conductivity	Dielectric constant	kp	Δ	E_A	L.	Charging hazard
	(g/cm ³)	$(\Omega^{-1}m^{-1})$		$(\Omega^{-1}m^{-1}$ rads ^{-Δ} s ^{Δ})		(e'	v)	
Betacloth	1.05	1.46E-15	3.2	n/s	n/s	2.5	5	Low
CFRP	1.1	3.11E-13	-	-	-	-		V low
Delrin	1.41	4.41E-14	4	n/s	n/s	1.2	26	Low
FEP	2.15	2.78E-16	2.91	3.91E-15	0.36	0.2	25	High
FR-4	2.06	8.48E-16	5.59	1.73E-20	1.07	2.4	14	High
LDPE	0.92	6.94E-15	4.26	6.97E-14	1.08	1.1	16	Low
PMMA	1.19	3.05E-17	3.95	n/s	n/s	0.4	17	High
Polyimide	1.42	1.49E-16	3.01	n/s	n/s	1.7	75	High
POM	1.41	1.54E-14	3.72	2.07E-13	1.57	1.1	11	Low
Solithane	0.91	3.56E-14	12.47	1.73E-15	0.57	1.3	33	Low

SPIS materials defined as a NASCAP like property (i.e. existing in the previous version)

SPIS extended property (must be define in the XML form of material definition – not possible in the previous format)

1D testing cases

Case 1 : 1D with uniform dielectric

- Simulation on teflon FEP material between two plates on aluminum.
 - Charge deposition rate: 10⁻¹³ A/m³
 - material temperature: 300 K
 - Conductivity (including RIC): 1.77x10⁻²⁰ Ω⁻¹.m⁻¹

The electric potential at the steady state

Results from the steady state solver

- Charging characteristics:
 - Time characteristic of charging: 1.46x10⁹ s (about 46 years)
 - Maximum charge density : -1.46x10⁻⁴ C/m³
 - Maximum potential corresponding is 7060 V
- To compare to 7025 V in the simulation.

→ the result error is less than 0.5 % which is quite good for a mesh with only 20 000 tetrahedra (100 points along x)

Comparison of the current collected

Simulation on teflon FEP material between two plates on aluminum :

- Charge deposition rate: 10⁻⁹ A/m³
- Dose deposition rate: 1 Gy/s
- material temperature: 300 K
- the conductivity: $2.07 \times 10^{-14} \Omega^{-1} .m^{-1}$

0,12

V Analytic

0,1

V SPIS

t = 1 250 s

– V Analytic

V SPIS

-10

-20

-30

-40

-50

-60

Potential (V)

3D demonstration case with the time solver

Case 3 : three dimensional test case

- The simulation condition are as follow:
 - Charge deposition rate: 10⁻⁹ A/m³
 - Dose deposition rate: 0.01 Gy/s
 - material temperature: 300 K
 - Conductivity (including RIC): for FEP 3.91x10⁻¹⁵ Ω^{-1} .m⁻¹

Results from the time scheme solver t = 5000 s

Results from the time scheme solver at t = 10000 s

Results from the time scheme solver at t = 15000 s

Results from the time scheme solver at t = 20000 s

Results from the time scheme solver at t = 25000 s

Simulation results at the end of simulation

Results from the time scheme solver at t = 25000 s

- The current are not completly directed toward the conductor
- The current collected by the conductor does not correspond to the charging current
- \rightarrow the steady state is not reached

Solver mode comparison

Results from the time scheme solver at t = 25000 s

Results from the steady state solver

- · The current are not completly directed toward the conductor
- The current collected by the conductor does not correspond to the charging current
- \rightarrow the steady state is not reached
- The potential obtained is far to be the maximum potential at the steady state

Conclusion

Conclusion

- 3D Internal charging tool implemented in SPIS:
 - Charge and dose deposition map as input
 - Poisson equation + continuity + Ohm Law
 - Conductivity mode with temperature, E field and RIC
 - XML list of internal charging material
- Testing wrt analytic case done
- A 3D demonstration case shown using the steady state solver and the time scheme sover

Questions

