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Introduction

- Scope
ESA/ESTEC contract
e Technical Officer: Giovani Santin

» Partners: G4Al (Geant4 Associates International Ltd, UK), TRAD (Tests and Radiations, FR), DH Consultancy
(BE), ARTENUM (FR), ONERA (FR), TAS-F(F), INTA (SP) ,TAS-E (SP) (Prime).
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ELSHIELD tool ovreview
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Tools Interfaces
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Internal charging modules in SPIS-NUM
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Internal charging solvers in SPIS

Internal charge transport =>
Three modes of resolution:

1.

The time scheme solver

(
~V-(e,6,VV )zp
op .
ot TV I=,
k J=okE
2. The steady state solver
O(cE)=p |
—_ |:|(£O£r U)E —_ gogrp
o o
3. Automatic selection mode

- Conductivity model (=> Based on DICTAT):

o(T,E,D)= o(T,E)+ ¢(D)

En
» Bulk conductivity: a(T):aweXp T

KT

* Field induced conductivity (Adamec and

Calderwood):
2+ cosh(/?F%))
2kT . [ €eEo
o(TE)=¢(T] 3 oEs smh(m)
« Radiation induced conductivity: | (D )= K, D“

- Material properties needed:

 Activation energy €,

* Maximum conductivity o,

« Jump distance & (fixed at 10A)
* Dielectric relative permittivity €,

+ Radiation induced conductivity parameters k, and A




The materials

- XML database dedicated to internal charging simulations:

Material Density Dark Dielectric] |kp FaX E., Charging
conductivity| Jconstant hazard
(g/cm?®) | (£27'm—1) (2" 'm—! (eV)
rads—= s2)

Betacloth | 1.05 1.46E-15 3.2 n/s n/s 2.5 Low
CFRP 1.1 3.11E-13 - - - - V low
Delrin 1.41 4. 41E-14 4 n/s n/s 1.26] Low
FEP 2.15 2.78E-16 291 3.01E-156 0.36)]10.25 High
FR-4 2.06 8.48E-16 5.50 1.73E-20 1.07]12.44 High
LDPE 0.92 6.94E-15 4.26 6.97E-14 1.08]1]1.16 Low
PMMA 1.19 3.05E-17 3.95 n/s n/s 0.47 High
Polyimide | 1.42 1.49E-16 3.01 n/s n/s 1.75] High
POM 1.41 1.54E-14 3.72 2.07TE-13 1.57]111.11 Low
Solithane 0.91 3. 56E-14 12.47 1.73E-15 0.57)111.33 Low

SPIS materials defined as a NASCAP like
property (i.e. existing in the previous version)

SPIS extended property (must be define in the
XML form of material definition — not possible
in the previous format)
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1D testing cases
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Case 1 : 1D with uniform dielectric

- Simulation on teflon FEP material between two plates on aluminum.
Charge deposition rate: 1013 A/m3
material temperature: 300 K
Conductivity (including RIC): 1.77x102° Q-1.m-1

Dielectric boundary condition
(Neuman with E= 0)

Computation domain

(Teflon FEP) \(2(
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The electric potential at the steady state
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Results from the steady state solver

- Charging characteristics:
Time characteristic of charging: 1.46x10° s (about 46 years)
Maximum charge density : -1.46x104 C/m3

Maximum potential corresponding is 7060 V
- To compare to 7025 V in the simulation.

—> the result error is less than 0.5 % which is quite good for a mesh with only 20 000
tetrahedra (100 points along x)
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Comparison of the current collected

Simulation on teflon FEP material between two 0 =150 s
plates on aluminum : ;g
- Charge deposition rate: 10-° A/m3 S 30
. o
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- e
- the conductivity: 2.07x104 Qt.m™ :2
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3D demonstration case with the time
solver
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Case 3 : three dimensional test case

- The simulation condition are as follow:
— Charge deposition rate: 109 A/m3
— Dose deposition rate: 0.01 Gy/s
— material temperature: 300 K
— Conductivity (including RIC): for FEP 3.91x101> Q1. m-!
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Electrical potential and current evolution i

Results from the time scheme solver t = 5000 s
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Electrical potential and current evolution

Results from the time scheme solver at t = 10000 s
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Electrical potential and current evolution

Results from the time scheme solver at t = 15000 s
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Electrical potential and current evolution

Results from the time scheme solver at t = 20000 s
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Electrical potential and current evolution

Results from the time scheme solver at t = 25000 s
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Simulation results at the end of simulatid
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- The current are not completly directed toward the conductor
- The current collected by the conductor does not correspond to the charging current
- the steady state is not reached
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Solver mode comparison

Results from the time scheme solver at t = 25000 s Results from the steady state solver

i Potential (V)
Electron current (A/m2) Potential (V) EIecTror]weCL]quen‘r (A/m2)
le-11 e )
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I5e-12 Se-la
05612 2.50-12

0 - 0]

- The current are not completly directed toward the conductor
- The current collected by the conductor does not correspond to the charging current
- the steady state is not reached

- The potential obtained is far to be the maximum potential at the steady state
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Conclusion
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Conclusion

- 3D Internal charging tool implemented in SPIS:
Charge and dose deposition map as input
Poisson equation + continuity + Ohm Law
Conductivity mode with temperature, E field and RIC
XML list of internal charging material

- Testing wrt analytic case done

- A 3D demonstration case shown using the steady state solver and the time
scheme sover
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Questions
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