

The Hot Plasma Environment Monitor (HOPE-M) for telecoms satellites

Dhiren Kataria¹, Hubert Hu, Mark Hailey, Richard Cole¹, David Rogers², Andrew Fazakerley¹, Phil Ireland³

¹Mullard Space Science Laboratory (MSSL), UCL Department of Space and Climate Physics, Holmbury St. Mary, Dorking, Surrey RH5 6NT UK

²European Space Agency, 2200 AG Noordwijk

³SEA, SEA House, Bristol Business Park, Coldharbour Lane, BRISTOL, BS16 1EJ

SPINE Meeting, ESTEC

Plan

- Introduction
- Hot Plasma Environment Monitor (HOPE-M)
 - Design overview
 - Key technology developments
- Some results from ChaPS
- Summary

In-situ Plasma Instrumentation

- Strong plasma instrumentation heritage
 - Planetary environments: Cassini, Mars and Venus Express (built by SWRI), Mars 96 (launcher failed), AMPTE-UKS
 - Magnetospheric missions: Cluster, Double Star, Polar, CRRES, STRV
 - Cometary studies: Giotto
 - Technology Demonstration: TechDemoSat
- Current missions

SPINE Meeting, ESTEC

- Solar Orbiter
- JUICE
- Highly miniaturised particle sensors
 - QB50 INMS and UCLSat CubeSat

Instrument Miniaturisation

- Driven by CubeSat and Space Weather
 - Horses for courses
- Generic technology development
 - Electronics miniaturisation HV, readout, digital
 - Detection systems combined e-ion
- Alternative geometries to top-hats
 - Cylindrical, Bessel box
- Technology demonstration on UK TechDemoSat, QB50 precursor missions

High temporal resolution proof-of-concept analyser

TechDemoSat ChaPS SPINE Mceting ESALEOdel

Ion and Neutral Mass Spectrometer for QB50

Silicon wafer analyser

Flight Missions and Space Weather

- Charged Particle Spectrometer (ChaPS), TechDemoSat – launched July, 2014
- Solar Wind Analyser (SWAN), Sunjammer recently cancelled
- 14 x Ion and Neutral Mass Spectrometer (INMS), QB50 - launch precursor June 2014, main 2016
- UCLSat 2U CubeSat for QB50, launch 2016
- Solar Wind Analyser (SWA) Suite, Solar Orbiter launch 2018

Image credits: SSTL, L'Garde, NASA, ESA

SPINE Meeting, ESTEC

Flight Missions and SSA

Background Image credit: NASA

SPINE Meeting, ESTEC

Hot Plasma Environment Monitor (HOPE-M) Key requirements

- Telecoms satellites at GEO
- Surface charging monitor, post-anamoly data
- Combined electrons and ions
- 30 eV 30 keV
- Low resource: 0.5 kg
- Compact digital electronics
 - Complex capabilities, rad hard memory
- 15 year lifetime

Hot Plasma Environment Monitor (HOPE-M) Design overview

- 2 x Bessel box variants
 - Compact geometry
 - Considerable design flexibility
 - Ability to "tune" performance
 - High/low analyser constants
 - Used on STRV
- $\pm 22^{\circ} \text{ x} \pm 60^{\circ}$ Field of view
- Modular design
 - Analyser head, electronics box
- Single MCP, polarity flipping
- Four readout channels
- Silicon detector development in parallel

MCP

Anode

SPINE Meeting, ESTEC

18th May, 2015

Hot Plasma Environment Monitor (HOPE-M) Design overview

- 2 x Bessel box variants
 - Compact geometry
 - Considerable design flexibility
 - Ability to "tune" performance
 - High/low analyser constants
 - Used on STRV
- $\pm 22^{\circ} \text{ x} \pm 60^{\circ}$ Field of view
- Modular design
 - Analyser head, electronics box
- Single MCP, polarity flipping
- Four readout channels
- Silicon detector development in parallel

SPINE Meeting, ESTEC

Current HOPE-M architecture

SPINE Meeting, ESTEC

SPINE Meeting, ESTEC

TechDemoSat ChaPS

Dhiren Kataria, Hubert Hu, Gethyn Lewis, Richard Cole, Mark Hailey, Eric Ueberschaer, Andrew Coates

- ChaPS (Charged Particle Spectrometer)
 - Suite of miniaturised Bessel Boxes
 - Electron and ion analysis
- Three modes
 - Electrons in the auroral regions
 - Electrons and ions in the ionosphere
 - Spacecraft potential
- Delivered March 2012
- Launched July 2014

Data from ChaPS

SPINE Meeting, ESTEC

HOPE-M breadboard

- HV modulator and front end electronics integrated and tested with ions
- Throughput issues
 - Widened acceptance on one channel
 - Removed detector aperture increased noise
 - DAC offset, beam stability
- Reconfigured for further testing

SPINE Meeting, ESTEC

Performance parameters

	ChaPS - Magnetosphere	HOPE-M (breadboard)
Primary sampling region	Auroral Electrons at the poles	GEO
Particle Type	Electrons	Electrons, lons
Key View direction	N-S	Earth pointing
PROPERTIES		
Energy range (eV)	10 to 4,000 eV	30 to > 30,000 eV
Energy resolution (%)	< 40	< 30
Elevation acceptance	< 1.8°	± 11°
Azimuth acceptance	< 20°	± 60°
Energy Sweep time	1s	30s
Energy Sweep steps	64x4	64

SWA-EAS Implementation

- SWA Instrument
 - HIS, PAS, EAS

SWA-EAS Sensor

enhanced features

Cluster PEACE LEEA

- Suite Instrument Science
- EAS lead
- NASA

UCL

Xiaps

irap

 Deflector plates, Variable Geometric Factor System

Two Boom Mounted Top Hats with

- Size reduced by $1/\sqrt{2}$ compared to

High speed High Voltage modulation

SPINE Meeting, ESTEC

New Hampshire

NIVERSITY

SPINE Meeting, ESTEC

UCL

EAS

High speed High —

UNIVERSITY of New Hampshire

SPINE Meeting, ESTEC

EAS Technical Description

QB50 Mission

Mission Overview

- Lower Thermosphere Science
- 40 2U +IOD CubeSats
- Built by different universities
- 380 km Circular Orbit
- String of pearls configuration
- Q2, 2016 launch

• Selected "standard" sensors

- Ion/Neutral Mass Spectrometer
- Flux-(Phi)-Probe-Experiments (FIPEX)
- Langmuir Probe
- Thermistors

QB50 M

- Mission
 - Lower
 - 40 2U
 - Built by
 - 380 kn
 - String
 - Q2, 20
- Selected
 - Ion/Ne
 - Flux-(F
 - Langm
 - Therm

SPINE Meeting, ESTEC

Technical Budgets

Unit	Mass (gms)	Power (W)	CubeSat Volume (litres)
INMS	220	0.78	0.3
	10%	20%	20%
FIPEX	160	1.95	0.3
	10%		10%
LP	<300	0.85	0.3
	25%	20%	10%

- Power: Orbit average 0.5W with duty cycling
 - CONOPS refined to fit within power and data budgets
- Science Unit Documents on the web
 - https://www.qb50.eu/index.php/tech-docs/category/3-sensor-units

Summary

- Strong Heritage, Aggressive Miniaturisation Programme
- Developments for flight missions
 - Solar Orbiter EAS, ChaPS, QB50, SWAN for L1
- HOPE-M for geostationary satellites
 - Combined low resource electron-ion analyser
 - Modular design, ability to tune for science/monitoring
 - Target mass 0.5 kg
- Enabling technology for future missions
 - Generic technologies
 - Silicon wafer fabrication

Acknowledgements

- Support of David Rogers, Eamonn Daly (technical officer for SPEAR feasibility study) and Alain Hilgers
- MSSL team
 - In-situ: Gethyn Lewis, Andrew Malpuss ion beam
 - Science: Andrew Fazakerley
 - Engineering: Mark Hailey, Hubert Hu, Andullah Khalil, John Coker
 - Workshops: Doug Davies, Gary Davison, Ian Phillips, Simon Hemsley

SPINE Meeting, ESTEC