

Surface Charging of the <u>JU</u>piter <u>ICy moons Explorer</u>

F. Cipriani, D. Rodgers and A. Hilgers European Space Research and Technology Centre, Netherlands (fabrice.cipriani@esa.int)

13th Spacecraft Charging Technology Conference Pasadena, 23th-27th June 2014

ESA JUICE Mission

- Prime KO (mid-July 2015)
- Phase B2 from mid-July 2015 -> end Feb 2017
- Phase C starts March 2017
- Current launch in 2022
- Arrival in 2030

→ 3 years in Jupiter Magnetosphere
(2 Europa flybys, 9 Callisto flybys,
282 days Ganymede

JUICE tour summary

		Equatorial phase # 1	(26%)	
۱.	01/2030 - Jupiter orbit insertion	$13 - 2/3\text{PL} \rightarrow 11_{-}/$	1 /101	
lup	iter tour	15 – 245RJ / 11-4	INJ	
۱.	Transfer to Callisto (11 months)			
2.	Europa phase: 2 Europa and 3 Callisto flybys	Europa flybys	(3%)	
	(1 month)			
3.	Jupiter High Latitude Phase: 9 Callisto flybys	9-40RJ		
	(9 months)		•	
1.	Transfer to Ganymede (11 months)	Jup High Latitude Phase	&	
5.	09/2032 – Ganymede orbit insertion	Callisto	(22%)	
Gar	nymede tour	30°/14 – 43 RJ		
۱.	Elliptical and high altitude circular phases (5 months)	Equatorial phase # 2	(26%)	
2.	Medium altitude (500 km) circular orbit (3			
	months)	Conversedo	(220/)	
3.	Low altitude (200 km) circular orbit (1 month)	Garlymede	(2370)	
		~16RJ		
	Most of the mission between	0 50PL (bot topuous		

Most of the mission between 9-50RJ (not tenuous plasma 0.1cm⁻³ to relatively cold and dense ~100cm⁻³)

ESA UNCLASSIFIED – For Official Use

Charging Environment Definition

- Models : reference D&G83 (includes cold and intermediate plasma) + GIRE (JOSE for radiation in Europe)
- Nonetheless gaps (huge spatial scale to cover local time variability, complex dynamic)
- Updated environment from ESA/JCAT study for cold and warm plasma components

Worst Case Charging 13Rj to 30Rj

Work by Garrett et al, 2008, 2012

* In auroral region (at the base of field lines)

- Galileo EUVS/ HUT observations + electron transport model
- \rightarrow characteristics energy energy & electron fluxes (Ajello, 2001)

* <u>At the equator between 13-30Rj</u>: assumes an equatorial Spacecraft sitting on field line connected with diffuse auroral region : Galileo EPD (100keV and 1 MeV lower bound of fluxes in the diffuse area)

 \rightarrow WC energy input from fitted spectra

Worst Case Charging Environment 15Rj – 30Rj

- Auroral Kappa vs Maxwellian → different input currents
- JUICE vs GEO → different ratios of warm to hot components
- Kappa distributions at equator

Environment Updates / Worst Case definition (ongoing – JCAT inputs)

Galileo/PLS data compiled by F. Bagenal and provided by JCAT project

WC environmental input currents ~2nA.cm-2

JUICE Spacecraft model

SPIS Simulations

- Up to 250000 tetrahedrons in volume
- 0.03m up to 1.0m on the S/C depending on the Debye Length
- Full PIC for ions and electrons (10⁷ particles)
- Includes booms, antennae, particle instruments for electrostatic cleanliness investigations
- s/c attitude wrt plasma flow and Sun

Charging in the Magnetosphere at the Moons orbits

9Rj (Europa)

16Rj (Ganymede)

	Sunlight (V)	Shadow (V)	Debye Length (m)
9Rj	-30 to -10	-48 to -21	3
16Rj	-5 to 2	-7 to 0	20-40
29Rj	6 to 10	3 to 7	235

Conductive s/c body, coverglass on solar arrays front

European Space Agency

ESA UNCLASSIFIED – For Official Use

Methods comparison (WC)

	JUICE Maxwellian WC1	JUICE Maxwellian WC2	JUICE Kappa WC	ECSS GEO BiMax WC
Thick sheath model Al	[-3100 to -8300] ^a	[-36300 to -68000]ª	[-2315 to -7703] ^a	N/A
Thick sheath model Ref. [1]	-2212	N/A	-1934 to -4834	N/A
SPIS Alox (Al)	-3900 to -9300 (max -20015)	-6100 - to -16800 (max -33000)	N/A	-16400
SPIS ITO	-2600 to -5500	-4000 to -11300	N/A	-37

Current balance (main) : Hot electrons = Secondaries from electrons and protons (+ cold and warm ions)

- → Reasonable agreement between results from analytical methods
- → SPIS estimates indicate larger negative potentials (geometry effects, secondary emission)

Differential charging – ESD risk

Sensitivity to environment parameters

- Tenfold decrease in cold plasma density (a) OR 50% increase in hot electrons peak energy (c) results in an <u>increase of the absolute surface</u> potential by a factor of 2.
- 50% increase of the hot protons population density <u>decreases the absolute surface potential by</u> <u>a factor of 2.</u>

	Plasma Parameters				
	Cold/Warm	Hot	SPIS ITO S/C potential (V)		
Ni=Ne (cm-3)	6.9/1.024	0.57/0.341	No - 5522		
Te (eV)	15/1000	25000/30000	va – -3323		
Ni=Ne (cm-3)	0.2/1.024	0.57/0.341	Vb - 11806		
Te (eV)	200/1000 25000/30000		v <i>0</i> = -11090		
Ni=Ne (cm-3)	6.9/1.024	0.57/0.341	Vo = 10400		
Te (eV)	15/1000 35000/30000		vc = -10409		
Ni=Ne (cm-3)	6.9/0.0	0.57/0.341	• Vd = -5312V		
Te (eV)	15/N/A	25000/30000			
Ni=Ne (cm-3)	6.9/1.024	0.57/0.57	- Ve = -2628V		
Te (eV)	15/1000	25000/30000			

ECSS GEO vs JUICE Worst Cases

- Larger absolute charging levels in JUICE environment than in GEO (30% with Al, 100 times with ITO)
- Differential charging more severe in GEO environment
- **ITO less efficient at mitigating charging in JUICE environment** than in GEO

Solar Arrays backside coating material	Vs/c SUNON (V)	Vcg SUNON (V)	Vdiff(V)	Vs/c SUNOFF (V)	Vcg SUNOFF (V)	Vdiff(V)
ΙΤΟ	-1956	-1406	-550	-2651 (3.6%)	-2052(4.5%)	-551
Al2O3 (with / without hot protons as from ITO)	-2732(3.1%)	-1981(3.7%)		-3819(2.9%)/ -3241(2.8%)	-2993(3.6%)/ -2528(3.3%)	

An ITO coating on the backside of the Solar Arrays decreases differential charging at equilibrium by about 40% and absolute charging by about 50% compared to a configuration using White Paint SG120FD. Moreover for a given thickness differential charging varies (linearly) as the coverglass bulk conductivity.

Summary and Conclusion

- 1. Full s/c estimates generally indicates larger charging levels compared with previous work at Jupiter / in agreement when using similar method
- kV surface charging levels can occur in JUICE environment, possibly leading to ESDs on non conductive surfaces (e.g. risk in solar panels) → strong impact on solar panels design
- 3. Optimization possible using appropriate materials (timescale too short) Further work is needed to :
- 1. improve / refine our charging environment definition (kappa, variability and worst case scenarios e.g. at Europa)
- 2. include low temperature effects on materials surface and bulk conductivity
- 3. Improve models of RIC (temp, surface electric field)