

SPIS-Dust Validation Cases

19 May 2015 F. Honary, S.R. Marple, S.L.G. Hess, P. Sarrailh, J.-C. Mateo-Velez, B. Jeanty-Ruard, A. Anuar, F. Cipriani, A. Hilgers, D. Rodgers, J. Forest and B. Thiebault.

SPIS-Dust Validation Tests

2D and 3D simulation cases

2D simulation Domain

X=-50 to 50m Y=0 to 2m Z=-2 to 80m

Top, open boundary, OV 5m mesh

Crater, non-conductive (dielectric) lunar dust 10m diameter 2m deep, 0.5m rim

Plasma Potential

Dust Density for different SZA 2D simulation

Dust density as a function of radius

Simulation Domain for Asteroid

Simulation Parameters

Parameters	Values
Semi-minor radius (x axis)	100m. Simulation domain extends 85m above asteroid surface along X axis.
Semi-major radius (Z axis)	115m. Simulation domain extends 70m above asteroid surface along Z axis.
Υ	-1 to 1 m

Photoelectron Sheath

Photoelectron density as a function ^U of altitude

 log_{10} of photoelectron charge density (m⁻³ ecu) with reduced transparency to highlight the probing lines; SZA = 90° at 9 o'clock, 0° at 12 o'clock.

Dust Density and trajectory

Log10 of dust density

3D Simulation Domain

Crater, non-conductive (dielectric) lunar dust 5m diameter 1m deep

Bottom surface, conductive lunar dust 50 x 50m; 0.6m mesh

Top, open boundary, OV 6m mesh

Sides, periodic boundary 80m high

Lander 3m diameter Solar cells on upper part

Lander underside and legs aluminum

Z ⟨Y x

Simulation Parameters

Parameter	Value
Solar wind speed	400km/s
Electron and ion densities	1x10 ⁷ m ⁻³
Electron and Ion temperatures	10 eV
Photoelectron distribution function	Maxwellian

Dust Distribution: taken from Lunar source book 1991, extrapolated for dust particles <1 μm

Electric Potential for different SZA

Because of both the sunlight and solar wind ion shadowing by the crater rim, the inside of the crater becomes very negative, down to potential of -15V in for SZA=82

The sunlit edge of the crater stays at a nearly constant potential of 1 - 2 Volts. The flat surfaces out of the crater are positively charged for SZA<70 and negative for larger SZA.

Electric field normal to the surface

At low SZA, the electric field is mostly positive on the whole surface, leading to a positive charging of the surface dusts, whereas for large SZA the electric field is nearly zero for at surfaces, and mostly negative in the crater, leading to the negative charging of the dusts. Since the dust charge positively once emitted due to photoemission, the low SZA case seems more suitable to generate dust levitation, contrary to usual expectations.

Dust trajectory

SZA=0, Lander

SZA=80, Lander

SZA=0, Crater

SZA=80, Crater

Dust Density in the University

SZA=0, Lander

SZA=80, Lander

Dust Density in the University Set Vicinity of Crater and Lander

SZA=0, Lander and Crater

SZA=80, Lander and Crater

Thank you for listening