

Internal charging review of needs and perspectives with SPIS

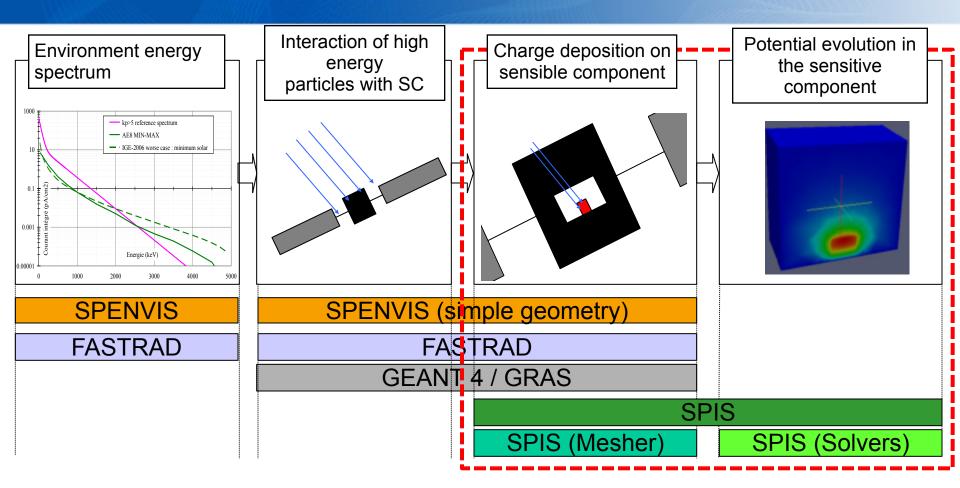
SARRAILH P., MATEO-VELEZ J.-C., ROUSSEL J.-F., FOREST J., RUARD B. ONERA ARTENUM

THE FRENCH AEROSPACE LAB

retour sur innovation

Initial needs in internal charging

- New ESA missions
 - JUICE
- · New needs of commercial missions
 - Indirect impact of electrical propulsion on GEO missions → longer transfert time in radiations belts
 - MEO missions (e.g. Galileo)
- New components and instruments
 - Higher integrations
 - · More sensitive instruments, low energy level measurement
 - Better taking into account of new materials (dielectric).
- · Needs of:
 - · A more detailed 3D internal charging analysis
 - · Better modeling of the inner charging dynamics
- \rightarrow Numerous evolutions at the radiations/charging common boundary
- → Evolutions of SPIS required in both numerical model (SPIS-NUM) and IME (SPIS-UI)
- → Require a multi-models and multi-physics approach, in interaction with radiations tools (e.g. GRAS, GEANT-4...)
- \rightarrow Led to a long and structured effort since 2011 and through several projects and actions:
 - Several ESA projects:
 - ElShield
 - CIRSOS
 - 3D MICS
 - Internal ONERA/Artenum actions: numerical models and IME improvements, GRAS integration, ray-tracing

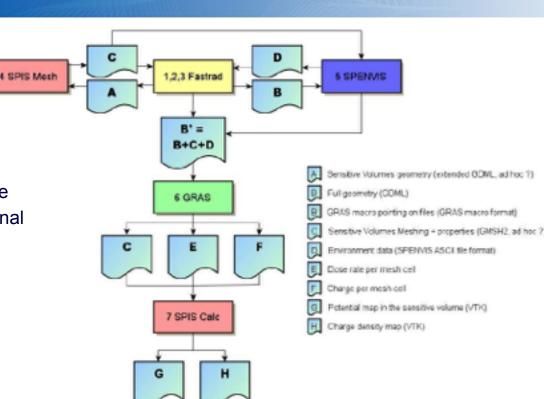


ELSHIELD – initial project

• ESA/ESTEC contract:

- Partners: G4AI (Geant4 Associates International Ltd, UK), TRAD (Tests and Radiations, FR), DH Consultancy (BE), ARTENUM (FR), ONERA (FR), TAS-F(F), INTA (SP) ,TAS-E (SP) (Prime).
- ELSHIELD = Energetic Electron Shielding, Charging and Radiation Effects and Margins
- Develop a tool (or a set of tools) to estimate the cumulative effects of the charge deposition in the S/C payload
- Prevent risk of direct breakdown \rightarrow margins evaluation
- Use of standard tools:
 - Charging → SPIS ("Spacecraft Plasma Interaction Software", see http://dev.spis.org/)
 - Radiation → Geant4 based ("toolkit for the simulation of the passage of particles through matter", see http://www.geant4.org/)

ELSHIELD – Basis of an internal charging tool



ONER

- SPENVIS = Space Environment Information System (see http://www.spenvis.oma.be/intro.php)
- FASTRAD = Radiation engineering tool (see http://www.fastrad.net/)
- GRAS = Geant4 Radiation Analysis for Space (see http://www.geant4.org/geant4/)

ELSHIELD – Interfacing SPIS and GRAS

- SPENVIS and/or FastRad :
 - Environment definition
 - Geant4 geometry definition
- Pre-processing using SPIS :
 - Import the geometry of the sensitive volume
 - Mesh the sensitive volume respecting internal charging constraints
 - Export the mesh to GRAS
- Geant4 simulation (Reverse MC method)

- Internal charging computation in SPIS
 - Import from Geant4/GRAS the charge and the dose deposition
 - Import the simulation parameter from FASTRAD interface
 - Convert the data in a SPIS project
 - Solves electric fields and potential maps in the sensitive area
- Post-processing
 - Export in VTK format dose, charge, electric field and potential as a function of time

Internal charging solvers in SPIS

- Internal charge transport model:
 - Poisson equation
 - Continuity equation for the net charge
 - Ohm's law

$$-\nabla \cdot (\varepsilon_0 \varepsilon_r \nabla V) = \rho$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot J = \rho$$

$$J = \sigma E$$

$$GRAS$$

$$Charge
$$deposition rate
from Geant4/GRAS$$$$

- Conductivity model (inspired from DICTAT): $\sigma(T, E, \dot{D}) = \sigma(T, E) + \sigma(\dot{D})$ Dose deposition rate from Geant4/GRAS
- XML material library in SPIS

Material	Density	Dark conductivity	Dielectric constant	kp	, ,	Δ	E_A	Charging hazard
	(g/cm ³)	$(\Omega^{-1}m^{-1})$	constant		$2^{-1}m^{-1}$ ds ^{$-\Delta$} s ^{Δ})		(eV)	hazaru
Betacloth	1.05	1.46E-15	3.2	n/	s	n/s	2.5	Low
CFRP	1.1	3.11E-13	-	-		-	-	V low
Delrin	1.41	4.41E-14	4	n/	s	n/s	1.26	Low
FEP	2.15	2.78E-16	2.91	3.9	91E-15	0.36	0.25	High
FR-4	2.06	8.48E-16	5.59	1.	73E-20	1.07	2.44	High
LDPE	0.92	6.94E-15	4.26	б.	97E-14	1.08	1.16	Low
PMMA	1.19	3.05E-17	3.95	n/	s	n/s	0.47	High
Polyimide	1.42	1.49E-16	3.01	n/	s	n/s	1.75	High
POM	1.41	1.54E-14	3.72	2.0	07E-13	1.57	1.11	Low
Solithane	0.91	3.56E-14	12.47	1.	73E-15	0.57	1.33	Low

CIRSOS

- Key objectives:
 - Improve the integration of the complet modeling process into ONE tool or Integrating Modeling Environment (IME).
 - Simplifying the modeling process for non-experts;
 - Offering remote collaborating and co-expertise capabilities;
 - · Centralisation and versioning of modeled systems;
 - Finer radiations/charging models interactions.
 - Provide a tool adapted to future ESA scientific missions, like JUICE, especially in mission definition phase.
- Project gathers 8 partners and leaded by RadMod (See F. Lei for further information)
- Project coordinates at ESA by G. Santin and David Rodgers

Interoperability issues

- At the global modeling process, both EIShield and CIRSOS projects have outlined several sever interoperability constraints:
 - Cross-consistent control of various numerical models (e.g. SPIS, GRAS) and converge control
 - Cross-consistent definition of the computational domain
 - Geometrical description: Not only a question of tools and exchange formats
 - Descriptions needs to be adapted to each model: various LOD, different boundary
 - Material definition and characterization: Attribution and mapping may differ from one model to another one (e.g. nature of the surface in charging).
- Interoperability issues
- Integration issues

3DMICS

• Scope

- Internal charging critical for mission in MEO orbit and Jovian orbits (JUICE)
- ELSHIELD development of a first version of SPIS-IC (Internal Charging) tested at the functionality level and on simple cases
- CIRSOS based on ELSHIELD improving the modelling chain but not the IC physic and solvers
- IC modeling upgrade requires to take into account the time dependent aspects and more realistic conduction modelling inside the volume

Objectives

- Improve the time dependent ability of transport solver and the time evolution of the conductivity
- Improve the accuracy of the conduction model concerning the dependence on temperature, electric field, dose rate and, accumulated charges and dose
- Validate the modelling chain by comparing the simulation results to experimental ones

Method

- Upgrade the time dependent solver and the conductivity models in SPIS-IC
- Make available the new modules in the ELSHIELD modelling chain and CIRSOS one
- Propose and execute IC experiments on ground
- Compare experimental results to SPIS-IC ones

Perspectives

- Pre-processing improvements needed:
 - Extend to more complex geometries
 - Complex Boolean operation to import Geant4 geometry
 - Extend the automation of the meshing (user intervention required many times)
- 3D Internal charging solver improvement needed:
 - Efficient for the both asymptotic case: large or low time characteristics compared to the simulation duration
 - Solver developments needed for more complex situations
 - Solve implicitly the capacitive coupling in the continuity equation
 - Floating metals, linked to the electrical circuit of SPIS:
 - UI interface improvements (for expert only for the moment)
 - solve implicitly the charging
 - Exact calculation of the floating metal capacitance (Gauss law resolution)
 - Physics and numerical resolution of the interfaces between two different materials
- Data on volume conductivities

Other actions and developments

- Developments done at ONERA/Artenum
 - Developments focused on the charging process
 - In a first time, dedicated to the SPIS-PRO version in support to the SPIS-SERVICES offer
 - Improved models
 - First integration of external radiations tools (GRAS) into SPIS
 - Ray-tracer