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Motivation and context

Solar panels are key but sensitive element of spacecratft.

In particular, they are composed of various materials with different electrical
properties.

It leads to differential charging of the spacecraft surfaces and potentially to
electrostatic discharges.

Because of the wide range of scales of the panel elements, it is difficult to
model and solar panels involving new technology/layout requires
experimental tests.

All configuration cannot be tested => interest for accurate simlations.
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Motivation and context

The potential of the spacecraft are strongly dependent on the current collected
by the large exposed surface of the solar arrays.

Current collection effect differs depending on the conductivity of the collecting
material: dielectric (cover glass) vs conductive (structure). Small
conductors (cell edges, interconnects) represent a small fraction of the
surface and are usually neglected.

But small conductors may be strongly polarized: their effective collecting
surface may be quite different from their geometrical surface, thus
changing the current balance at the global (spacecraft) scale.

Must be taken into account to have realistic computation of the spacecraft
potential, but cannot be resolved spatially.

Need for models of the current collection by small conductive elements.
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Previous work

Mandell and Katz (1983):

NASCAP-LEO, biased pinhole model (~ OML). OML Law:
»=0

SPIS-GEO (2013):
OML (default) approximation

Limitations:

The simulation only split the unaffected total collected current towards conductor
and dielectric: simulation of interconnects on an ITO cover panel has no
effect.(even with 300V interconnects in a 0.1 eV plasma)

Only collected current, no emitted one (no snap-over)

Computation is averaged over the surface: impossible to identify what happen for a
single (worst, typical,...) interconnect.

Panel current circuit is not simulated: no power loss computation...
Second order effects at the interconnects neglected (erosion, secondary currents,..)
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Previous work

Mandell and Katz (1983):

NASCAP-LEO, biased pinhole model (~ OML). OML Law:

SPIS-GEO (2013):
OML (default) approximation

Mandell et al. (2003):

current collected by a 2D strip:
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H(v,8) = 1 for open trajectories, =0 for closed ones.

H (v, 8)=1 for all trajectories: exact solution but not accurate OML factor for a strip:

In reality the incidence angle is not conserved (non isotropic distribution on the collecting
surface).

Mandel et al. 2003, use <H> determined from simulation, as well as empirical potentials in the
gap determined from Gilbert simulations. Results OK but only suited for a particular solar cell
geometry.
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Modified OML law for plane 2D interconnects

Modified OML Law (acceptance angle):

OML: maximum impact parameter h,. Effective collection surface multiplied by hgr.
Works for a cylinder in free space, particles arrive from all directions.
But for an interconnector on a solar panel, only some directions of arrival are possible.

The acceptance angle can be expressed as the following expression:

h—h, T hy — h
acos sh, <h<h, — — atan ;0< h < hy
Ain:l-z = h;)'l'_ hn Al3 = 2 - ho

h.-1» / hy functions are sigmoid functions of q¢/mv? with a vertex around g¢ = mv? determined using
hyperbolic trajectories.

1 ;g K mv?
1 hi/hy =4 (1 —sin ®) 5
h 2cos® ¢ > mv
2 0 ; q¢ < mv?
hy/ho = 2
h I Cover glass 1 ; q¢p> mv
. v Cell hs/hy = tan @
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Simulations

The simulation domain: 4 x 4 x 0.2 cm box.
Top face open to ionosphere plasma, sides reflective.

Bottom made of cover glass except for a 0.8 mm wide gap at the centre of the domain in which the metallic
interconnect is located.
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Mes

£, Geometry

The ionosphere : 101°m=3 0.1eV Maxwellian electrons and ions at rest with respect to the solar panel.
Top boundary : potential fixed to OV.

The cover glass : set to OV, but may slightly evolve during the simulation.
The potential of the interconnect evolves from -1V to 1V by steps of 0.1V.
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Simulation results
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Comparison model — Simulations rate

On the surface Down the gap

Flat Interconnect on the surface Flat interconnect in the gap
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Comparison model — Simulations II- Higher |
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Current saturation due to finite cell surface

The model reproduces well the collected currents (including the recollection
of secondaries, not shown). This analytic model can thus be implemented in
SPIS to perform simulation at the panel/spacecraft scale.
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Comparison Experiment— Simulations | — Experim
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Comparison Experiment— Simulations

ONERA's JONAS chamber is simulated with
the solar panel inside. Environment is tuned
to get as close as possible as JONAS one.

vide (caisson JONAS)

Impossible to reproduce the exact e
wiring of the strings in the experiment.

Vbus= 0 a 350V (flottant)

A constant potential difference is applied
between strings so that the potential profile
along the panel is close to that of the experimental one.

ONERA




Comparison Experiment— Simulations
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Interconnects represent <2% of the surface

But their polarity determines that of the
whole panel.

Simulations performed at various Vbus
voltage with plasma ~20V and 2mA
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Comparison Experiment— Simulations

Simulation with Vbus=350V. Initially the interconnects are all positive,

But the current they collect changes the whole solar panel potential to -240V

At the end, only a few strings have a positive potential.

The panel potential is almost only determined by the current balance on interconnects
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But the current they collect changes the whole solar panel potential to -240V
At the end, only a few strings have a positive potential.
The panel potential is almost only determined by the current balance on interconnects

Mean__Interconnect_potential_V_versus_time_s.nc
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Comparison Experiment— Simulations

Simulation with Vbus =350V.

The effect of the interconnect polarization is visible on the cover glass surface
potential. High positive potential interconnects tend to collect all electrons.

_
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Comparison Experiment— Simulations

Simulation with Vbus =350V.

The effect of the interconnect polarization is visible on the cover glass surface
potential. High positive potential interconnects tend to collect all electrons.

Surface potentials t=500s e” density t=500s
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Comparison Experiment— Simulations

Simulation with Vbus =350V.

The effect of the interconnect polarization is visible on the cover glass surface
potential. High positive potential interconnects tend to collect all electrons.
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Perspectives (long term)

Ultimately, it would be desirable that SPIS be able to precisely compute the current
collection by each unmeshed elements of the solar panel.

=> precise estimate of the power loss due to plasma recollection
including panel circuit solving, snap over effect,...

=> precise estimate of the electrostatic risks
ESD risk maps: identifies most probable ESD sites (interconnect, gaps)
possible full PIC “zoom” to better assess the risk (secondaries,...)

=> precise estimate of the erosion and ageing risks

better mapping of the eroding particle flux on each elements
better erosion models and aged material properties
ageing effect on solar cell circuit (coupling with ONERA McSOLAR code)

First step is done, but the road is long. A simplified, easy to use version of the
present work should be implemented in the next version of SPIS (ESA SPIS-EP contract),
but a full stable production version requires more effort.
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