Multiscale simulations of the plasma interaction with solar cells

ANTOINE BRUNET - ONERA - DESP

Needs for multiscale simulations with SPIS

- Small scales (solar array interconnects, scientific instruments, ...)
- Large scales (wakes, jet effects, ...)

Artist's view of the Neosat mission (©ESA-P. Carril, 2012)

SPIS model of GEO satellite with EP(@Onera)

Standard solar array generator (4m x 8m, 52x56 solar cells)(©Onera)

Solar cells with interconnects(©Onera) < ○</p>

Needs for multiscale simulations with SPIS

- Small scales (solar array interconnects, scientific instruments, ...)
- Large scales (wakes, jet effects, ...)
- ⇒ Require local mesh refinements

Artist's view of the Neosat mission (©ESA-P. Carril, 2012)

SPIS model of GEO satellite with EP(@Onera)

Standard solar array generator (4m x 8m, 52x56 solar cells)(©Onera)

Solar cells with interconnects(©Onera) ○ ○

Patch finite element method

- Domain decomposition method:
 - Global coarse mesh
 - Refined local patches
- Iterative, but flexible
- Efficient in non-linear case

Convergence for a 2D plasma simulation around a negatively biased interconnect

Nonlinear patch method and application, A. Brunet, P. Sarrailh, F. Rogier, J.-F. Roussel, and D. Payan. Proceedings of ECCOMAS Congress 2016

User input:

Numerical steps:

Define meshes

User input:

- Define meshes
- Define appropriate boundary conditions

User input:

- Define meshes
- Define appropriate boundary conditions
- Flag meshes and boundaries

User input:

- Define meshes
- Define appropriate boundary conditions
- Flag meshes and boundaries

Numerical steps:

Compute mesh interactions

User input:

- Define meshes
- Define appropriate boundary conditions
- Flag meshes and boundaries

- Compute mesh interactions
- Split into sub-problems

User input:

- Define meshes
- Define appropriate boundary conditions
- Flag meshes and boundaries

- Compute mesh interactions
- Split into sub-problems
- Redirect particles

User input:

- Define meshes
- Define appropriate boundary conditions
- Flag meshes and boundaries

- Compute mesh interactions
- Split into sub-problems
- Redirect particles
- Compute vector/scalar interpolations

Demo

Demo

Current and future works

- Multimodel simulation (in progress)
 - Boltzmann model on coarse mesh
 - Full PiC in patches
- Experimental validation
- Mesh generation methods
 - Intersection computation
 - Mesh sharing
- Many-patch: model reduction, interpolation methods

Questions?

