

PICASSO spacecraft plasma interactions

Andreas Waets, Fabrice Cipriani & David Rodgers (TEC-EPS, ESA) SPINE M23, 05/04/2017

Outline

- What is PICASSO?
- Objectives of SPIS simulations
- Presentation of work in progress:
 - Simulation assumptions and constraints
 - Preliminary results
- Encountered problems
- Conclusions & To Do

PICASSO spacecraft

- PICosatellite for Atmospheric and Space Science Observations (BIRA, VTT, Clyde Space, CSL)
 - Distribution of ozone in stratosphere
 - Profile of stratosphere temperature
 - Measure ionospheric electron density (Multi-needle Langmuir probe)

PICASSO spacecraft

- PICosatellite for Atmospheric and Space Science Observations (BIRA, VTT, Clyde Space, CSL)
 - Distribution of ozone in stratosphere
 - Profile of stratosphere temperature
 - Measure ionospheric electron density (Multi-needle Langmuir probe)
- Orbit
 - LEO: 500 (current baseline) 700 km
 - High inclination: 98°→ Polar orbit crossing the auroral belts

Objectives: simulate PICASSO surface charging in SPIS

- PICASSO mission contraints:
 - Mesothermal regime ($v_e \gg v_{s/c} \gg v_i$) for a spacecraft with $v_{s/c} \approx 7000$ km/s (ram-wake effect)
 - Surface materials on spacecraft: Gold, cover glass, epoxy, ...

Objectives: simulate PICASSO surface charging in SPIS

- PICASSO mission contraints:
 - Mesothermal regime ($v_e \gg v_{s/c} \gg v_i$) for a spacecraft with $v_{s/c} \approx 7000$ km/s (ram-wake effect)
 - Surface materials on spacecraft: Gold, cover glass, epoxy, ...
- 1) In the LEO ionospheric environment
 Cold (0.2 eV) and dense (1x10¹⁰ m⁻³) plasma

Objectives: simulate PICASSO surface charging in SPIS

- PICASSO mission contraints:
 - Mesothermal regime ($v_e \gg v_{s/c} \gg v_i$) for a spacecraft with $v_{s/c} \approx 7000$ km/s (ram-wake effect)
 - Surface materials on spacecraft: Gold, cover glass, epoxy, ...
- 1) In the **LEO** ionospheric environment
 - Cold (0.2 eV) and dense (1x10¹⁰ m⁻³) plasma
- 2) In an auroral worst case environment
 - Flux of precipitating high-energy electrons, depleted ambient plasma density

Geometry & surface materials

- 3U Cubesat
 - 0.3m x 0.1m x 0.1m
 - Material: GOLD
- 4 solar arrays (deployed)
 - 0.23m x 0.08m x 0.002m
 - Base material: GOLD
 - Solar cells material: CERS
 - Back of solar array material: EPOX (50μm)
- Use of a simple electric circuit
- Spacecraft orientation fixed in simulations:
 - CERS in ram surface
 - EPOX in wake surface

Geometry & surface materials

- Spacecraft orientation fixed in simulations:
 - CERS in ram surface

PICASSO simulations in LEO environment

• LEO ionospheric plasma

	electrons	ions (O ⁺)
Density (m ⁻³)	1x10 ¹⁰	1x10 ¹⁰
Temperature (eV)	0.2	0.2
Drift velocity	0 km/s	-7500 km/s
Simulation method	Particle In Cell	Particle In Cell

- Short Debye length: $\lambda^2_D = \epsilon_0 kT/e^2 n \rightarrow 0.06m$, sheath around spacecraft
- Expected charging level \propto kT

Z

- Simulation in eclipse
- S/C body charging to \sim -0.65 V
- Very little differential charging between surfaces
- Results correspond to simulations using Maxwell-Boltzmann electron population

- Simulation in **sunlight**
- S/C body charging to \sim -0.45 V
- Little differential charging between gold and epoxy surfaces

- Simulation with no epoxy layer on back of solar arrays
- Simulations indicate a comparable charging level as case with epoxy layer

• Plasma potential cut in XY-plane

 Ion density cut in XY-plane: wake structure, almost no ions reach EPOX surface

- Spacecraft in LEO can charge up to high negative potential
- Criteria based on observations by DMSP spacecraft:
 - Ambient plasma density lower than 10⁴ cm⁻³ (?)
 - High integral electron number flux (> 10⁸ cm² s⁻¹ sr⁻¹) for energetic electrons (> 14 keV)
 - Eclipse

- Spacecraft in LEO can charge up to high negative potential
- Criteria based on observations by DMSP spacecraft:
 - Ambient plasma density lower than 10⁴ cm⁻³ (?)

For E <17.44 keV:

- High integral electron number flux (> 10⁸ cm² s⁻¹ sr⁻¹) for energetic electrons (> 14 keV)
- Eclipse
- This leads to the **ECSS** (-E-ST-10-04C) **worst case environment** distribution function

 $(2\pi kT_0)^{3/2}$

$$f(v) = 3.9 \times 10^{-18} \text{ s}^{3}\text{m}^{-6}$$
For E > 17.44:

$$f(v) = \frac{[N_{0}(m_{e})^{3/2} \exp\{-(E - E_{0})/kT_{0}\}]}{(e - k - E_{0})/kT_{0}\}]}$$

- Maxwellian fit¹ of ECSS distribution to allow for straightforward use in SPIS
 - N $\sim 1*10^7 \, \text{m}^{-3}$
 - kT = 11 keV
- Allows for faster simulation times (electrons in Maxwell-Boltzmann, ions in PIC)
- Study effect of background density
- 1. Charging simulations for a LEO satellite with SPIS using different environmental inputs, C. Imhof, H. Mank, J. Lange, 2016

- Simulations using Maxwellian fit and background density of 1.25x10⁸ m⁻³ [ECSS]
- Gold and cover glass surfaces remain $\sim 0V$, **Epoxy surface charges** negatively to kV range

-GOLD

- Simulations using Maxwellian fit and background density of 3x10⁹ m⁻³
- Gold and cover glass surfaces remain ~ 0V, Epoxy surface charges negatively to kV range

Epoxy surface charging levels with background plasma density:

$$-$$
 N = 3x10⁹ m⁻³

- N = 1.25x10⁸ m⁻³

- Maxwellian fit¹ of ECSS distribution to allow for straightforward use in SPIS
- → Use of tabulated distribution function
- Test feasibility of use in LEO/aurora simulations
- 1. Charging simulations for a LEO satellite with SPIS using different environmental inputs, C. Imhof, H. Mank, J. Lange, 2016

• Test to compare Maxwellian fit to actual ECSS distribution using virtual particle detector and spherical spacecraft geometry:

	Maxwellian fit	Tabulated DF
Temperature (eV)	11000	3960
Density (m ⁻³)	1.231x10 ⁷	1.13x10 ⁶

- Test to compare Maxwellian fit to actual ECSS distribution using virtual particle detector and spherical spacecraft geometry
- Differential flux measured in SPIS:

- Test to compare Maxwellian fit to actual ECSS distribution using virtual particle detector and spherical spacecraft geometry
- Differential flux measured in SPIS:

 Spacecraft charging level in SPIS, ambient plasma: N = 3x10⁹ m⁻³ and kT = 0.2 eV in PIC

 Large sensitivity of parameters to perform simulations in a desirable timespan

- Large sensitivity of parameters to perform simulations in a desirable timespan
- Limited validity of OML theory in LEO charge collection, possibly connected to mesh size issue

- Large sensitivity of parameters to perform simulations in a desirable timespan
- Limited validity of OML theory in LEO charge collection, possibly connected to mesh size issue
- Mesh size requirements for CubeSat simulations: high resolution to resolve thin elements

- Large sensitivity of parameters to perform simulations in a desirable timespan
- Limited validity of OML theory in LEO charge collection, possibly connected to mesh size issue
- Mesh size requirements for CubeSat simulations: high resolution to resolve thin elements
- Validity limits of spacecraft capacitance setting: large numerical instabilities encountered

Conclusions & future work

- Expected charging levels for PICASSO in ionospheric plasma
- High negative charging possible for non-conductive surfaces (epoxy) in wake in auroral plasma

Conclusions & future work

- Expected charging levels for PICASSO in ionospheric plasma
- High negative charging possible for non-conductive surfaces (epoxy) in wake in auroral plasma
- Solve simulation parameter issues!
- Study effect of background plasma in auroral environment
- Further testing of tabulated DF and analytical estimates for simple case (e.g. gold sphere)
- Test worst case ECSS on PICASSO geometry
 - including other S/C orientations
 - Use of a representative electrical circuit