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Purpose of the experiment

The MODEX project (Airbus-DS, ESA, UC3M, ONERA, CNRS and KTH) aims at refining the 
modelling of plasma plume, in particular the electron cooling mechanism. 
For this purpose, measurements of the electron density, electron temperature, plasma 
potential and electron energy distribution function (EEDF) along the plume axis as well 
as angularly were required to confront the electron cooling models. 

A SPT-100 1.5 kW-class Hall thruster
was used, and measurements were 
carried out at distances from 500 to 
1550 mm from its exit.

Six operating points of the 
thruster were investigated: 
● 300 V and 4 mg/s
● 300 V and 2 mg/s
● 400 V and 2 mg/s
● 225 V and 2 mg/s
● 150 V and 2 mg/s
● 150 V and 4 mg/s
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Overview of the setup

Test performed 
inside the 
CORONA 
chamber.
(2-m f, 4-m long)
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Probe size:
0.4 mm diameter.
5 mm length

Material:
Tungsten



Probes and translation stages

STS

LTS

Probe
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Probe



Example of IV curve measurement and analysis

First derivative smoothed 
by convolution with a 

Blackman window

V
p
 at maximum 
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 and T
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Floating potential energy

(a) IV curve

(b) dI/dV

(c) d2I/dV2

(d) EEDF
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Maps: 300 V, 4 mg/s

Fitted n
e
 is about 30% larger than the integrated one (~3x1015 m-3 in average).

Fitted T
e
 is about 15% lower than the integrated one (~0.3 eV in average).
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Maps: 300 V, 2 mg/s
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Maps: 400 V, 2 mg/s
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Maps: 225 V, 2 mg/s

Integrated T
e
 is less consistent due to a larger measurement noise at this operating point.

8/17



Maps: 150 V, 2 mg/s

Shape of the plume was less collimated at 150 V due to a different current oscillation mode.
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Maps: 150 V, 4 mg/s

Integrated T
e
 is less consistent due to a larger measurement noise at this operating point.
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Maps: Plasma potential
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Plasma parameters along the plume (IV fitting)

● Electron density x3-5 when mass flow rate x2, and slight linear dependency on discharge 
voltage.

● Electron temperature decreases with mass flow rate increase, and increases with discharge 
voltage.

● Plasma potential slightly increases with both discharge and mass flow rate increase. 
Change of mass flow rate also changes the shape of the axial dependency.
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Ratio of specific heats g

The ratio of specific heats relates the 
electron density and temperature as:

where the both electron density and temperature 
are normalized at a given location.

The normalization can be made at any point
along the plume: g is the average of the results 
each point, with error determined as the standard 
deviation (1-s).

g values are roughly constant along the plume, with
values lower than the adiabatic 5/3 (1.66) value.
Hence, the plasma is not in local thermodynamic 
equilibrium. Also, a larger mass flow rate seems 
to decrease g.

300 V, 4 mg/s

300 V, 2 mg/s

400 V, 2 mg/s
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EEPFs

Axial
(a) 300V, 4mg/s
(b) 300V, 2mg/s
(c) 400V, 2mg/s

Angular
(a) 300V, 4mg/s
(b) 300V, 2mg/s
(c) 400V, 2mg/s
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Shape of the EEPF (1/2)

A general formulation for the EEPF is:

where the exponent a describe the curvature of the EEPF. a=1 is for a Maxwellian 
distribution whereas a=2 is for a Druyvesteyn distribution.

Figure: Example of fitting on the measured 
EEPF. The measured EEPF are clearly not 
Maxwellian.
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a is a measure of how much high energy 
electrons are missing (i.e. how low the 
probability of having high energy electron 
is compared to the Maxwellian case).



Shape of the EEPF (2/2)

Change of the exponent a along the plume axis (a) and across the angles (b), at 550 mm:

The shape of the distribution seems to be affected by the mass flow rate of the thruster:
Higher mass flow rate brings the distribution closer to a Maxwellian.
Is the shape of the EEPF determined by collision closer to the thruster exit?

More in Giono et. al. (2017), submitted to Plasma Sources Science and Technology
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Conclusion

Experiment / Data set
● The electron density, electron temperature and plasma potential were 

successfully measured in the far-plume for six different operating points.
● The EEDFs were successfully obtained for four of these operating points.

Future
● These measurements will be confronted to simulation in order to improve the 

models.
● What kind of additional measurements would be needed for improving the 

simulation/modelling?
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Extra slides



Error on the measurement

Figure: Example of hysteresis

5 up and 5 down sweeps measurements were taken at the same location to estimate the 
measurement and hysteresis errors.

Error on n
e
 and T

e
 is about 5%, for both methods.

Error on V
p
 is about 3%.



Recorded current-voltage characteristic

Measurements were performed 
using a Keithley 2440 sourcemeter.

Each IV curve is a single “up” 
sweep from -15 V to +35 V. 

Ion 
saturation 

current

Transition

Electron 
saturation 

current



Deriving the plasma parameter (1/2)

● The plasma potential V
p
 is determined as the maximum of dI/dV (after smoothing with the 

Blackman window convolution).

● The EEDF is calculated from the d2I/dV2 (calculated from the smoothed dI/dV) using the 
Druyvesteyn formula:

● The EEPF is obtained by multiplying the EEDF by the inverse of the square root of the 
energy:

 



Deriving the plasma parameter (2/2)

● Two methods were used to get the electron density and temperature: 

- Fitting on the IV curve 
T

e
 from the transition current (I

t
) taken from V

p
-4 V to V

p
, assuming a negligible ion 

current in the transition region.

n
e
 from the electron saturation current squared (I

es
) taken from V

p
 to +30V, 

assuming OML regime.

 

- Integrating the EEDF from 0 to the largest energy recorded, assuming a negligible 
second derivative of the ion current.



Comparing with KTH readout electronics (1/2)

A custom read-out electronics was developed by KTH. Measurements were conducted at 
300 V and 2 mg/s. Sweeps were taken from -45 to 45 V with a 1.6 mV step, recording 
multiple up and down sweeps (5x105 points per sweeps) in about 10s (Keithley single up 
sweep from -15 V to 35 V takes 1.5 minutes). 
However, the noise was to large for accurate EEDF measurements and the Keithley was 
used to ensure proper EEDF measurements.

The probe voltage was ensured by a 16-bit DAC and the current was recorded using a 16-bit 
ADC. The sweeps were operated using an FPGA and a STM32 board is used for the user 
interface/communication.

Left: KTH read-out
Right: Raw IV curve (blue) 
and binned IV curve (red).



Comparing with KTH readout electronics (2/2)

Similar results for n
e
 and V

p
.

Larger uncertainty on T
e
.

More improvement on the 
electronics is needed but the 
performance are encouraging:
- Faster and more flexible 
system for a very small 
fraction of the price.
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