

PICASSO spacecraft plasma interactions

Andreas Waets & Fabrice Cipriani (TEC-EPS, ESA) SPINE M24, 23/10/2017

Outline

- What is PICASSO?
- Surface charging in LEO
- SPIS simulation setup
- Simulation results:
 - Langmuir probe sweep test
 - PICASSO geometry vs cuboid geometry model sensitivity
 - S/C orientation parametric study
 - Background density parametric study
- Difficulties encountered & lessons learned

PICASSO spacecraft

- PICosatellite for Atmospheric and Space Science Observations (BIRA, VTT, Clyde Space, CSL)
 - Distribution of ozone in stratosphere
 - Profile of stratosphere temperature
 - Measure ionospheric electron density (Multi-needle Langmuir probe)
- Orbit
 - LEO: 500 (current baseline) 700 km
 - High inclination: 98°→ Polar orbit crossing the auroral region

Objectives: simulate PICASSO surface charging in SPIS

- PICASSO mission contraints:
 - Mesothermal regime ($v_e \gg v_{s/c} \gg v_i$) for a spacecraft with $v_{s/c} \approx 7000$ km/s (ram-wake effect)
 - Surface materials on spacecraft: Gold, cover glass, epoxy, ...
- 1) In the **LEO** ionospheric environment
 - Cold (0.2 eV) and dense ($1x10^{10} \text{ m}^{-3}$) plasma
- 2) In an auroral worst case environment
 - Flux of precipitating high-energy electrons (isotropic in our simulations)

Geometry & (SPIS) surface materials

- 3U Cubesat
 - 0.3m x 0.1m x 0.1m
 - Material: GOLD
- 4 solar arrays (deployed)
 - 0.23m x 0.08m x 0.002m
 - Base material: GOLD
 - Solar cells material: coverglass (CERS)
 - Back of solar array material: EPOX (50 μm default)
- Use of a simple electric circuit
- Spacecraft orientation fixed in simulations:
 - CERS in ram surface
 - EPOX in wake surface

Geometry & surface materials

- Spacecraft orientation fixed in simulations:
 - CERS in ram surface

• LEO ionospheric plasma

	electrons	ions (O ⁺)
Density (m ⁻³)	1x10 ¹⁰	1x10 ¹⁰
Temperature (eV)	0.2	0.2
Drift velocity	0 km/s	-7500 km/s
Simulation method	Maxwell-Boltzmann/ Particle In Cell	Particle In Cell

- Short Debye length: 0.06m, thin/intermediate sheath around spacecraft
- Simulations performed in eclipse

PICASSO Langmuir Probe simulation in LEO

- Sweeping Langmuir Probe (SLP):
 - 4 Langmuir probes mounted on extremity of solar panels
 - Cylindrical: 1mm radius, 40mm length, 40mm boom
 - Always at least one probe out of the wake
 - Operated between -5 and 13 V w.r.t. to s/c ground

PICASSO Langmuir Probe simulation in LEO

- Sweeping Langmuir Probe (SLP):
 - Output of SPIS simulations in $N_e = N_i = 1E8 \text{ m}^{-3}$ and $N_e = N_i = 1E10 \text{ m}^{-3}$

- Simulations using actual PICASSO dimensions produce potential divergences during simulations
- Simplify geometry to cuboid
 - Preserving total surface area
 - Preserving surface area of each material on all sides
 - No Langmuir probe
- Result: excluding small mesh elements (S/A edges, Langmuir probe)

 Potentials at equilibrium in N_e = N_i = 1E10 m⁻³ + auroral population environment: difference of ~ 100 V

- $N_e = N_i = 1E10 \text{ m}^{-3} + \text{auroral}$ population
- Orientation of geometry w.r.t spacecraft movement
- I.e. rotation around Z-axis
 - **0**°: CERS on ram surface, EPOX on wake surface
 - **180**°: EPOX on ram surface, CERS on wake surface

- Auroral population with different background densities
- Background density range:
 1E9 1E11 m⁻³
- Unstable simulations indicated by dashed lines

Node 2 (EPOX) potential

Difficulties encountered performing LEO simulations in SPIS

- High density plasma \rightarrow short Debye length + small spacecraft
 - \rightarrow High resolution mesh needed, heavy simulation
- Mesothermal S/C velocity \rightarrow collected current noise
 - \rightarrow Instabilities in circuit solver
 - \rightarrow Not resolved when using GlobalMaxwellBoltzmann, Backtracking,...
 - → Divergences in potential evolution when approaching equilibrium at random times
 3 2017/10/19-10:18:03 Time: 7.068639, Dt = 0.01 s

12017/10/19-10:18:03	Time: 7.068639, Dt = 0.01 s
12017/10/19-10:19:00	dt = 0.0
12017/10/19-10:19:00	changed into 9.999999E-4 s

• Success ratio below 15% (22/150)

Conclusions

- Simulations of Cubesat in LEO using SPIS is difficult
 - Simulation instabilities, specific tuning of parameters is needed.
 - Effects and results of Langmuir probe instrument unclear
- On Simulations in auroral ECSS worst case environment
 - Effect of different S/C orientation gives expected results
 - Effects of background plasma density (when stable) as expected
- Main issues encountered with SPIS and open questions

Difficulties encountered performing LEO simulations in SPIS: Lessons learned

- Simplifying geometry reduces simulation time and improves stability, however can yield very different results.
- To reduces noise the *AvPartNbPerCell* and *electronSecondaryDensification* parameters need to be set to high values (5-8 and 10-14 resp.).
- *SimulationDt* is best kept limited (max 0.01s).
- Csat set to realistic value (~1E-9 F)
- ValidityRenormalisation must be set to very low values (0.5).