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SUMMARY 

One way of dealing with t h e  problem of spacecraft  charging is  t o  provide 
a thermal con t ro l  surface  which w i l l  not charge up t o  t h e  breakdown l e v e l ,  
while r e t a i n i n g  i t s  thermal con t ro l  propert ies.  A thermal blanket  config- 
u ra t ion  meeting these  requirements has been designed a t  B r i t i s h  Aerospace 
( r e f .  1) . 

Arcing i s  eliminated by l i m i t i n g  t h e  surface p o t e n t i a l  t o  wel l  below 
t h e  threshold  l e v e l  f o r  discharge. This i s  achieved by enhancing t h e  leakage 
current  which r e s u l t s  i n  conduction of t h e  excess charge t o  t h e  spacecraf t  
s t ruc tu re .  The thermal blanket consis ts  of severa l  l a y e r s  of thermal con t ro l  
(space approved) mate r i a l s ,  bonded together,  with Kapton on t h e  outs ide ,  
arranged i n  such a way t h a t  when t h e  outer surface i s  charged by e lec t ron  
i r r a d i a t i o n ,  a  s trong e l e c t r i c  f i e l d  is s e t  up on t h e  outer  Kapton l a y e r  
r e s u l t i n g  i n  a g r e a t l y  improved conductivity. 

This paper describes how t h e  basic proper t ies  of matter  were u t i l i s e d  i n  
designing t h i s  blanket and how charge removal was achieved together  with 
t h e  optimum thermo-optical proper t ies .  

INTRODUCTION 

When a surface  i s  subject  t o  e lec t ron bombardment, t h e  important e lec t ron 
parameters a r e  t h e  e lec t ron  energy and t h e  f lux.  The e lec t ron  energy 
determines t h e  maximum surface voltage t h a t  may be a t t a ined ,  provided t h e  t a r g e t  
ma te r i a l  has a thickness wel l  i n  excess of t h e  e lec t ron  range i n  t h a t  ma te r i a l  
r e f .  1). The f l u x  l e v e l ,  i . e .  t h e  current  per u n i t  a r e a  inc ident  upon t h e  
surface  determines t h e  r a t e  of charging d ~ / d t .   his a l s o  depends on a number 
of o the r  f a c t o r s  and i s  given by t h e  equation 

where C i s  t h e  capacity of t h e  surface 

I. i s  t h e  incident  current  
I nc 

F Ij i s  t h e  sum of a l l  components of t h e  removal cur ren t ,  given by 



where 

and 

I i s  t h e  inc ident  proton current  
P r  

I i s  t h e  photo-electr ic  e f f e c t  induced current  
ph 

Ibs i s  t h e  back-scattering current  

I is t h e  secondary e lec t ron current  
sec 

I1 
is t h e  leakage current  through t h e  d i e l e c t r i c  material .  

The design of an arc-free thermal blanket  involves t h e  enhancing of one 
of t h e  removal cur ren t s ,  namely t h e  leakage cur ren t ,  s o  t h a t  dV/dt becomes 
zero a t  a surface voltage p o t e n t i a l  wel l  below t h a t  an t i c ipa ted  from t h e  
e lec t ron energy. 

When t h e  equilibrium surface  vol tage  i s  below t h e  discharge threshold  
f o r  t h e  e n t i r e  range of e lec t ron  energies an t i c ipa ted ,  no discharges w i l l  
occur. Thus an arc-free thermal blanket  is obtained. 

THE LEAKAGE CURRENT 

I n  order t o  enhance t h e  leakage current  t h e  parameters a f f e c t i n g  i t s  
value a r e  examined and one o r  more of these  a r e  var ied  accordingly. The 
leakage current  may be considered a s  t h e  sum of t h r e e  components. The 
ohmic cur ren t ,  t h e  i n t e r n a l l y  induced secondary current  and t h e  transmission 
current .  Thus we may w r i t e  

- 
I1 - 'ohmic 

+ I .  + I 
lnsec  t r a n s  

The ohmic current  i s  t h e  current  which flows through t h e  d i e l e c t r i c  a s  a 
r e s u l t  of t h e  existence of a p o t e n t i a l  d i f fe rence  across  t h e  mater ia l .  I n  
reference 1 an approximate expression i s  derived from c l a s s i c a l  mechanics f o r  
t h i s  term 

AW 

'ohmic a exp ( - & ) s inh  ( $  ' 2KT 1 

where AW. is t h e  ion iza t ion  p o t e n t i a l  of t h e  mate r i a l  
J 

T is t h e  absolute  temperature 

K i s  Boltzmann's Constant 

V i s  t h e  surface vol tage  

d is t h e  mate r i a l  thickness 



e is t h e  e lect ronic  charge 

and a i s  t h e  average distance between atoms i n  t h e  material.  

The i n t e rna l  secondary current, r e fe r red  t o  by other authors as "radia t ion 
induced conductivity", i s  t he  current r e su l t i ng  from t h e  l i be r a t i on  of e lect rons  
from t h e  atoms i n  t h e  mater ia l  by a process where energy from incoming e lect rons  
i s  t r ans fe r red  t o  mater ia l  electrons. Although an ana ly t ica l  expression 
fo r  t h i s  component has not been derived it is  believed t o  be dependent on 
t he  e l e c t r i c  f i e l d ,  t h e  energy of the incident e lect rons  and t he  f lux  of t h e  
incoming electrons.  

,The transmission current  is the product of t h e  e lect ron transmission 
probabi l i ty  and t h e  incoming current. The transmission probabi l i ty  P, f o r  a 
simplif ied square wave po ten t ia l  i s  given by ( ref .  1 )  

exp (- 2 b d) P ,  ( 5 )  

where d i s  t h e  mater ia l  thickness 

and b t  i s  given by 

where m i s  t h e  e lect ronic  mass 
e 

6 i s  Planckfs Constant (divided by 27~) 

Yo i s  t h e  max. surface potent ia l  

and To i s  t h e  k ine t i c  energy of t h e  incoming electrons. 

The expressions given by equations ( 4 )  and (5)  show t h a t  t h e  leakage 
current  is  dependent exponentially upon t h e  mater ia l  thickness and consequently 
a decrease i n  thickness w i l l  lead t o  a much increased leakage current. I n  
t h e  case of a t h i n  aluminised Kapton sheet ,  provided t he  aluminium layer  i s  
grounded a decrease i n  t h e  material  thickness w i l l  a l s o  lead t o  an increase 
e l e c t r i c  f i e l d  and t h i s  w i l l  influence t h e  migration of charges deposited 
within t h e  mater ia l  t o  t h e  aluminium layer ,  The e l e c t r i c  f i e l d  r e s u l t s  
from very low energy e lect rons ,  w i t h  near zero range, depositing t h e i r  charge 
on t h e  surface of t h e  material.  

As can be seen from equations ( 4 )  and (5) when t h e  material.  thickness 
i s  decreased t h e  r e l a t i v e  proportion of t h e  const i tuent  currents of I given 
i n  equation (3)  change, so  t h a t  f o r  d=o, I = It an = I. and t h e  

1 

surface  voltage is  zero. When the  material  t h i c L e s s  haslgcfinite value t h e  
ohmic current  and t he  i n t e rna l  secondary current  have a non zero value 
provided t he r e  a r e  su f f i c i en t  low energy e lect rons  t o  bui ld  up a voltage 
on t h e  surface. 



This may l e a d  t o  a leakage current  i n  excess of t h e  inc ident  cu r ren t  and such 
currents  have been observed experimentally ( r e f .  1 and 2). 

THE MULTILAYER THERMAL BLANKET 

The thickness of t h e  mate r i a l  determines t h e  thermo-optical p roper t i e s ,  so 
t h a t  a  decrease in thickness reduces both t h e  absorp t iv i ty  a and t h e  
emiss iv i ty  e  of the material .  I n  general  t h e  r a t i o  a / € ,  which i s  a f i g u r e  
of meri t  f o r  thermal control  ma te r i a l s ,  increases  with decreased thickness.  
For a 3 m i l  aluminised Kapton f o r  ins tance  a/e = 0.538 whi l s t  f o r  a  0.25 m i l  
Kapton t h i s  f igure  becomes 0.688, 

Another reason why a super t h i n  d i e l e c t r i c  f i l m  cannot be used a s  a 
thermal blanket  i s  t h e  mechanical p roper t i e s  of such f i lm,  The mate r i a l  
must be s u f f i c i e n t l y  strong t o  withstand t h e  t e s t i n g  environment. Thus f o r  
a Kapton f i lm a thickness value of l e s s  than 2 m i l  i s  not considered pract icable .  

I n  order t o  overcome t h i s  problem, a mul t i layer  thermal blanket  (*) has 
been designed combining good mechanical s t r eng th ,  acceptable thermo-optical 
p roper t i e s  and the a b i l i t y  t o  conduct inc ident  charge and keep t h e  surface 
p o t e n t i a l  t o  well below t h e  discharge threshold  f o r  t h e  mater ia l .  The proto- 
type vers ion i s  shown i n  f igure  1, The outermost l a y e r  i s  a t h i n  aluminised 
Kapton film. The thickness of 0,25 m i l  shown here i s  s u f f i c i e n t  t o  keep t h e  
surfgce p o t e n t i a l  t o  below 2.5 KV a t  room temperature (o r  below 3.2 KV a t  
-170 C )  which i s  well below t h e  discharge threshold  of approximately 9 KV. 
The maximum po ten t i a l  value i s  obtained when t h e  incident  e l ec t rons  have a 
mean range of approximately equal t o  1 /3  of t h e  mate r i a l  thickness. For a 
0.25 m i l  Kapton maximum surface p o t e n t i a l  i s  obtained with 7 KeV elec t rons .  
A t  higher energies t h e  surface p o t e n t i a l  i s  reduced a s  t h e  r a d i a t i o n  induced 
conductivi ty i s  increased coupled with an enhanced di f fus ion process i n  t h e  
presence of a  strong e l e c t r i c  f i e l d  and a shor te r  migration d i s t ance  a s  t h e  
e lec t rons  a r e  deposited c loser  t o  t h e  charge co l l ec to r .  

The thermo-optical proper t ies  of t h i s  prototype mul t i layer  thermal blanket  
a r e  determined by t h e  outermost l ayer ,  so  f o r  t h e  conf igura t ion shown i n  
f igure  1 a/e  i s  0.688. 

The mechanical proper t ies  of t h e  blanket  a r e  determined by t h e  o v e r a l l  
thickness of t h e  blanket. The t h i c k e r  ( 2  m i l )  aluminised Kapton is  a t tached 
t o  t h e  th inner  aluminised l a y e r  by means of a  double-sided pressure  s e n s i t i v e  
adhesive (e.g. Y966 PSA). 

The thermo-optical proper t ies  of t h e  configurat ion shown i n  f i g u r e  1 
a r e  l imi ted  by the thickness of t h e  outermost l ayer ,  I n  order t o  overcome 
t h i s  t h e  aluminium and t h e  adhesive have been replaced by a s i n g l e  t ransparent  
conductive adhesive, This improved vers ion is  shown i n  f i g u r e  2, 

(*)  UK pa ten t  applicat ion No. 8035523 / USA app l i ca t ion  No. 204,703 
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A transparent  conductive adhesive does not ex i s t  as such but it i s  possible 
t o  d i l u t e  a polyurethane based s i l v e r  or cobal t  loaded paint  (cog. Coballoy 
P212 *) and use it t o  a t t ach  t he  two layers of Kapton together. It i s  poss ible  
t o  spray a l ayer  t h i n  enough t o  be opt ical ly  transparent  but s t i l l  r e t a i n  
enough conductivity fo r  t h e  mult i layer p r inc ip le  t o  operate. A r e s i s t i v i t y  
of 2 Mi2 o r  l e s s  i s  believed t o  be suff ic ient .  

An a l t e rna t i ve  t o  t h e  use of conductive transparent  adhesive i s  t o  use 
0.25 m i l  Kapton spat tered with Indium Tin Oxide and a t t ach  it t o  aluminised 
Kapton using a c l ea r  polyester  adhesive. Such an arrangement i s  shown i n  
f igure  3, The advantage of t h i s  design i s  t h a t  t h e  mater ia ls  used a r e  already 
qua l i f i ed  fo r  Space use and t he  IT0 spa t te redprocess  on Kapton provides 
uniform reproducible proper t ies  on the  inner conductive layer ,  which a r e  
d i f f i c u l t  t o  achieve with a spray. 

EXPERIMENTAL TESTS 

The prototype multi layer thermal blanket of f igure  1 has been extensively 
t e s t ed  a t  t h e  UKAEA elect ron I r rad ia t ion  f a c i l i t y .  The t e s t  r e s u l t s  have 
been reported elsewhere ( re f .  1 )  . 

Two samples of approximately 100 cm2 were i r r ad i a t ed  using monoenergetic 
0 

e lect rons  a t  2 0 ' ~  and -170 C. The electron energy was varied from 3 t o  30 kev 2 
a t  f l ux  l eve l s  varying from 0.4 t o  35 nA/cm . No discharges were observed 
at e i t h e r  temperature during s i x  hour i r r ad i a t i on  periods, under several  
d i f f e r en t  combinations of f lux  and energy. The maximum surface voltage record- 
ed was 3.2 $V a t  - 1 7 0 ~ ~  with an incident e lect ron energy of 7 kev and a f l ux  
of 24 nA/cm , The surface po ten t ia l  was subs tan t ia l ly  reduced a t  higher 
e lect ron energies. The maximum surface po ten t ia l  a t  2 0 ' ~  was 2.4 kV. 

The t e s t s  described above prove the success of t he  design i n  eliminating 
arcing of a d i e l e c t r i c ,  while maintaining t h e  good thermo-optical propert ies.  
The r e s u l t s  obtained from measurements of t h e  leakage current  and surface 
voltage were i n  accordance with t h e  theory used t o  design t h e  blanket. 

Samples described i n  f igures  2 and 3 a r e  current ly  being investigated 
and t h e  r e s u l t s  w i l l  be t h e  subject  of another publication. 

CONCLUSIONS 

The success of t h e  mult i layer thermal blanket i n  eliminating arcing 
ind ica tes  t h e  v a l i d i t y  of t h e  design pr inciples  used. Placing a charge 
co l l ec to r  a t  a c e r t a in  depth i n  t h e  d ie lec t r i c  s e t s  up a strong e l e c t r i c  
f i e l d ,  improving charge mobility towards t h e  charge co l lec to r  and enhancing 
t h e  leakage current. The increase i n  t h e  leakage current  i s  suf f ic ien t  t o  
make dV/dt = 0 a t  surface voltage level  wel l  below the  discharge threshold. 

* Available from Graham Magnetics Inc., Texas, USA. 



The same pr inc ip le  has been used t o  design thermo-optically improved 
versions with op t i c a l l y  transparent  charge co l lec to rs .  This design has been 
applied t o  second surface  mirrors as wel l  and r e s u l t s  of t h e  invest igat ions  
w i l l  be published i n  due course, 

REFERENCES 

1. Fe l las  CON.  : An Arc-Free Thermal Blanket f o r  Spacecraft Use, 
IEEE 1980 Annual Conference on Nuclear and Space Radiation Effects ,  
Transactions on Nuclear Science, Vol, NS-27, Noo 6, December 1980, 
p, 1801 - 1809. 

2, Staskus J o V ,  and Berkopec F,Do, Proceedings of Spacecraft Charging 
Technology Conference 1978 (NASA Conference Publicat ion 2071, 
A F G L - T R - ~ ~ - O O ~ ~ )  U. So A i r  Force Academy Colorado Springs, 
0ct.-Nov, 1978, p. 457-484. 

Figure 1. Prototype Version of 
the Multilayer Thermal 

Blanket. 
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Figure 3. A Further Example of 
the Improved Version of the 
Multilayer Thermal Blanket. 
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