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ABSTRACT

The International Solar Polar Mission spacecraft is designed to use
Jupiter's large mass to project it into an orbit perpendicular to the eclip-
tic plane to enable it's onboard scientific experiments to collect data over
the north and south poles of our sun. The spacecraft will approach as close
as 5 or 6 Jupiter radii during the critical day of maximum orbit change and
must be designed to survive the high electron flux surrounding the planet.

Most of the electrons striking the spacecraft will be stopped within
the various materials and produce an increasing negative potential and pos-
sibly hazardous electric fields, except for a few electrons of extremely
high energy which pass on through and those which are sputtered off as sec-
ondaries and those which are repelled by the increasing negative potential.
If the electrons deposited in insulators produce electric fields which ex-
ceed the dielectric strengths, i.e., fields of the order of 106 volts/cm,
then undesired internal discharging can occur. When energetic electrons
penetrate or are stopped in a nonconductor they reduce its bulk electrical
resistivity by increasing the number of electron-hole carriers rendering it
more of a semiconductor, a phenomena known as radiation induced conductiv-
ity. This then permits more of the electrons to flow through the dielectric
toward nearby conductors and away from the regions of high deposited elec-
tron density, thereby reducing the accompanying electric field and perhaps
avoiding any troublesome arcings and flashovers.

In this study we have taken the external thermal blanket to be 13 mils
of polyethylene which has known range and stopping power as a function of
electron energy, applied the most recent omnidirectional peak Jovian elec-
tron flux at 5 Jupiter radii, calculated the electron current penetrating
the thermal blanket and allowed this to impinge on a typical 20 mil poly-
ethylene insulator surrounding a wire. The radiation dose rate to the insu-
lator is then calculated and the new electrical conductivity found. The
results demonstrate that the increased electronic mobility is sufficient to

keep the maximum induced electric field two orders of magnitude below the
critical breakdown strength.

CALCULATIONS

A thermal blanket 13 mils thick consisting of 22 layers of Sheldahl,
kapton, mylar, teflon, and vacuum deposited aluminum is approximated in this
study by a 13 mi1 layer of polyethylene. The polyethylene parameters used
in this calculation are: a dielectric constant of 2.3, a density of 0.92

*This work supported in part under NASA Contract No. 955500.
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gram/cm?, a volume resistivity of 1017 ohm-cm, and a dielectric strength
of 0.5 x 106 volts/cm.

Figure 1 displays the electron range in polyethyiene as a function of
electron energy plotted from data in Reference 1. For a 13 mil or 0.033 cm.
thickness we find that electrons with energies below 0.16 Mev are stopped
within the thermal blanket. In this study we are concerned with the elec-
trons which penetrate this blanket and reach a typical insulated wire within
the spacecraft; the insulation around this wire is taken to be poiyethylene
with a thickness of 20 mils or 0.051 cm. We find from Figure 1 that elec-
trons with energies greater than 0.29 Mev pass on through this 0.051 cm. of
insulation.

Figure 2 illustrates the total stopping power in polyethylene as a
function of electron energy plotted from data in Reference 1. The electrons
with energies between 0.16 Mev and 0.29 Mev which are deposited in our 20
mil insulator of interest lose an average of 2.6 Mev/cm.; therefore, they
impart an energy to this dielectric equal to their initial energy minus the
energy they lost while traversing the 13 mils of thermal blanket. This av-
erage 0.22 Mev electron loses an average of 2.6 Mev/cm. times 0.033 cm. or
0.085 Mev traversing the thermal blanket, and has remaining 0.22 Mev minus
0.086 Mev yielding 0.134 Mev for deposit in our inner insulator. The elec-
trons having energies greater than 0.29 Mev which pass through our inner
dielectric lose approximately 2.2 Mev/cm.; therefore, they impart 2.2
Mev/cm. times 0.051 cm. for 0.112 Mev per electron to the polyethylene.

Figure 3 gives the Jovian electron omnidirectional integral peak flux
as a function of energy at a distance of 5 Jupiter radii plotted from data
in Reference 2. This omnidirectional flux needs to be divided by 4 to ob-
tain the correct number crossing unit surface per second according to Refer-
ence 3. Values from Figure 3 are 2.8 x 108 electrons/cmé-sec at 0.16 Mev
and 1.7 x 108 electrons/cmé-sec at 0.29 Mev. After appropriatg]y dividing
by the necessary 4, these fluxes become 7.0 x 107 electrons/cmé-sec at 0.16
Mev and 4.2 x 107 electrons/cm?-sec at 0.29 Mev.

The rate of electron density deposited in the inner insulator is
(7.0 - 4.2) x 107 e ~/cmé-sec = 2. 8 x 107 e~/cml-sec. This is multiplied by
the e]ecron1c charge of 1.6 x 10-19 $oulomb to yield a current density of
4.5 x 10-12 amp/cm¢. These 2.8 x 107 e~ | cmé-sec which stay in the insula-
tor impart an average energy of 0.134 Mev per electron for a product of
3.75 x 106 Mev/cm?-sec. The 4.2 x 107 e~/cmé-sec of higher energy electrons
which penetrate the inner insulator lose an energy of 0.112 Mev per electron
for a product of 4.7 x 106 Mev/cmé-sec. This total of 8.4 x 10 Mev/cmz—
sec is converted to a dose rate by using the identity 1 rad =6.25 x 10
Mev/gram to give:

6 Mev/cmz-sec)(l rad-gm/6.25 x 107 Mev)

(8.4 x 10
x (1 cm/0.92 gm)(1/0.051 cm) = 2.9 rad/sec

The radiation induced conductivity is calculated using
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AG = qKTuﬁ =5 x 10—17 b

from Reference 4, where q is the electronic charge of 1.6 x 10-19 coulomb, K
is the density function for electron-hole pairs of 3 x 1013 pairs/cm3—rad, T
is the state lifetime of 10-11 sec, u is the mobility of 1 cmé/ volt-sec, and
D is the dose rate in rad/sec. Our typical inner polyethylene insulator has
its conductivity changed near Jupiter by the amount

17 17

a0 = 5 x 100" sec/rad-ohm-cm (2.9 rad/sec) = 14 x 10~ 1 ent

ohm ~-cm

The new conductivity is expressed as the sum of the initial and the change
yielding
17

17 1 -1

o= oy*ao=1x10" + 14 x 107 =15 x 107V ohm~locm

An electrical model is now constructed for the charge density deposited
in the insulator and for the equivalent circuit. It turns out that the as-
sumed shape of the charge density doesn't really matter, i.e., it may be an
isosceles triangle distribution with the apex at the center of the insula-
tor, or a sinusoidal distribution with the maximum in the center, or a delta
function with all charge deposited right at the center. The maximum value
of the electric field produced in the insulator is found from Poisson's
equation

da-v - dE __®
E;? dx €

to be Epax(x,t) = s pmax(t)/e, where s is the insulator thickness and e
is the insulator permittivity. The equivalent electrical circuit is taken
to be an insulator having both capacitance and resistance in parallel,
grounded on each side, with half the deposited electron current flowing in
each direction as shown in Figure 4. This model becomes

Je/2 = JR + JC

The resistive current density is given by Ohm's equation

JR(X,t) = o(t)E(x,t) = oS pm(t)/e

The capacitive or displacement current density is given by

Jo = dQ/dt where Q = fpm(t)a(x-o)dx =S p,(t)
This yields
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Jg/2 = os o (t)/e *+ s do_(t)/at

which has the solution

o (t) = 5%% (1 - e%%Ye)

This is expressed in terms of the maximum electric field as

t

E () = %% (1 -e%%Ye)

The charging time constant is found by

12 17 1

coul/volt-m)/ (15 x 107Y7 ohmL-ca

elo = Kso/a = 2.3(8.85 x 10° )

x (1 m/100 cm) = 1360 sec

The maximum obtainable electric field is given by

12 -17 1 1

Emax

Jef2c = (4.5 x 107%2 amp/cn®)/2(15 x 107 onm~local)

1.5 x 104 volts/cm

The equation for the electric field becomes

e-t/1360 sec

E (t) = 1.5 x 10" volts/cm (1 - )

This maximum electric field of 1.5 x 104 volts/cm is between one and
two orders of magnitude less than 5 x 105 volts/cm, the dielectric strength
of polyethylene; therefore, no electric discharges are expected to occur
within the insulation surrounding wires beneath the spacecraft's thermal
blanket.

An interesting graph, Figure 5, is produced by plotting the equation
for the charging time versus the absorbed current for various values of re-
sistivity

t = £ In (Je/ (Je-20,))
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One can locate the appropriate curve for the new radiation induced conduc-
tivity or resistivity, locate the deposited current density and therefore
find the time to breakdown which for our particular values gives a time of
infinity.

One final interesting conclusion is found by inspecting the maximum
electric field that would be produced if there were no radiation induced
conductivity, i.e., by using the initial conductivity of 10-17 ohm-l-cm-1

12,.

12 (1 x 107

5

Enax = Je/20 = 4.5 x 107 ) = 2.25 x 10” volts/cm

ma

This is still Tess than polyethylene's breakdown strength of 5 x 105
volts/cm; therefore, no breakdown would be expected even without the dielec~
tric degradation. Of course, this applies only to insulation beneath the
thermal blanket.
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