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In a study of the charging characteristics of paints for  various uses on 
spacecraft under electron bombardment we have found the following : 

There i s  not a strong temperature dependence of the  charging 
character is t ics  between -1 550C and +300C. 

There i s  a noticeable hysteresis effect  as  the electron beam 
energy i s  varied. 
All of the paints tested exhibit large secondary yields a t  low 
(Q 1 keV) bombarding el ectron energies . 
Surfaces can charge ei ther  positively or negatively depending on the 
conditions and the paint. 
Paints are  not simple,; will require more detailed study; and will 
probably ac t  differenctly i n  mu1 tip1 e energy electron t e s t s ,  

I NTRODUCTI ON 

Painted surfaces are  common on spacecraft because of the i r  desirable 
thermal and mechanical properties The concern of spacecraft designers for 
the electr ical  properties of spacecraft surfaces underlines the importance of 
the charging character is t ics  of spacecraft paints as well, since in some cases 
par t ia l ly  conductive paints may be used as  subst i tutes  for more traditional 
materials with h i g h  r e s i s t i v i t i e s .  Spacecraft design requires tha t  the surface 
charge build-up be l e s s  than the material breakdown voltage. For sc i en t i f i c  
spacecraft, the absolute potential on the spacecraft surface should be small 
when compared to  the e l ec t r i c  f i e lds  to  be measured or  the par t ic le  spectra 
to  be sampled. 

* The research described in th i s  paper was carried out a t  the Je t  Propulsion 
Laboratory, Cal ifornia Ins t i tu t e  of Technology, under NASA Contract NAS7-1OC 

** Current address: J e t  Propulsion Laboratory 



Even i f  t h e  s p a c a r a f t  has. an abso lu te  n e t  charge, t h e  d i f f e r e n t i a l  
charg ing of  surfaces Should'be l i m i t e d  td avo id  furthet-disturbance o f  nearby 
e l e c t r o s t a t i c  f i e l d s ;  f o r  t h e  G a l i l e o  spacecraf t ,  a  maximum 1 0  v o l t  d i f f e r e n t i a l  
sur face p p t e n t i a l  was des i red  under a l l  environmental cond i t i ons .  The e l e c t r i c a l  
p rope r t i es  of spacecraf t  pa in t s  (CTL-15, S 1 3 ~ - l o w ) ( l )  have been o f  i n t e r e s t  t o  
spacecraf t  for a  long per iod .  Normal p a i n t s  such as S13G low outgasing do 
charge t o  some degree?. Nonetheless, they do n o t  charge t o  the  h igh  l e v e l s  
observed f o r  ~ e f l o n R ,  and ~ a p t o n R  sur faces.  I n  t h i s  r e p o r t ,  we w i l l  begin by 
d iscuss ing  our r e s u l t s  on standard spacecra f t  pa in t ,  and then on several con- 
d u c t i v e  pa in ts .  

STANDARD CHEMGLAZE PAINT 

The surface p o t e n t i a l  versus e l e c t r o n  beam energy f o r  standard Chemglaze 
p a i n t  i s  shown i n  F igure  1. I n  t h i s  experiment, t h e  i n c i d e n t  e l e c t r o n  f l u x  was 
kept  a t  about 1  nanoamp/cm2 and t h e  sample a t  room temperature. The sur face 
p o t e n t i a l  bu i l ds  up almost 1  i near l y  w i t h  t h e  acce le ra t i ng  beam v o l  tage u n t i l  
t he  beam energy reaches about 10 keV. A t  t h a t  p o i n t  t he  sur face vo l tage  
sa tura tes  a t  j u s t  over 400 v o l t s  even though t h e  beam energy increases t o  20 keV. 

A f t e r  exposure t o  the 20 keV beam, t h e  beam energy was reduced t o  5 keV, 
and t h e  sample was cooled. The sur face vo l tage  d i d  n o t  r e t u r n  t o  i t s  prev ious 
va lue  a t  5 keV, b u t  remained a t  t he  vo l tage  i t  had reached i n  t h e  20 keV beam. 
This e f f e c t  may be important  i n  s i t u a t i o n s  where the  environment i s  changing 
r a p i d l y .  

As t h e  temperature o f  t h e  sample f a l l s  (as seen i n  F igure  2) t he  sur face 
p o t e n t i a l  ra i ses  a t  a  r a t e  o f  approximate ly  1 vo l  t /degree Ke lv in ,  reaching i t s  
h ighes t  va lue  near t h e  co ldes t  temperature. These hys te res i s  e f f e c t s  may be due 
t o  the  heterogeneous nature o f  p a i n t s .  Suppose t h a t  p a r t  o f  t h e  p a i n t  i s  a  
very  good i nsu la to r ,  charges t o  h igh  vo l tages  and has a  long decay constant ,  
b u t  t h a t  t h e  remainder o f  t h e  p a i n t  i s  r e l a t i v e l y  conduct ive, does no t  charge t o  
h igh  vo l tage  and tends t o  bleed charge o f f  r a p i d l y .  This  m a t e r i a l  w i l l  then 
behave i n  a  manner s i m i l a r  t o  t h a t  observed. Some e lec t rons  w i l l  happen t o  
penet ra te  i n t o  reg ions  o f  h igh  res i s tance  and become trapped. Because these 
reg ions  have long decay times, va ry ing  the  i n c i d e n t  beam energy w i l l  n o t  cause 
a  readjustment o f  t h i s  charge. This  w i l l  produce the  e f f e c t  seen when t h e  sample 
was f i r s t  exposed t o  a  20 keV beam and then re turned t o  a  5  keV beam w i thou t  a  
s i g n i f i c a n t  change i n  the  sur face vo l tage.  

The second fea tu re  o f  p a i n t s  observed, namely the  increase i n  sur face 
vo l tage  as the temperature decreases, can be explained by t h e  c h a r a c t e r i s t i c s  
o f  t h e  r e l a t i v e l y  conduct ive p a r t  of t h e  p a i n t .  I n  most non-meta l l i c  ma te r i a l s ,  
t he  res i s tance  o f  t h e  m a t e r i a l  increases as the  temperature decreases. I n  t he  
case o f  a  t w o - r e s i s t i v i t y  m a t e r i a l ,  such as the  one we have pos tu la ted  fo r  
pa in ts ,  t h i s  means t h a t  the  a b i l i t y  of t h e  m a t e r i a l  t o  b leed charge from t h e  
i n s u l a t i n g  areas i s  now reduced, and t h e  m a t e r i a l  w i l l  charge t o  a  h igher  l e v e l s  
as the  ma te r ia l  i s  cooled. 

F igure  3 shows the  increase i n  surface vo l tage  as the  sample i s  cooled and 
warmed du r ing  exposure t o  a  20 keV e l e c t r o n  beam. The c o o l i n g  and warming curves 
a re  separated by as much as 100 v o l t s ,  The coo l i ng  curve v o l t a g e  l ags  w h i l e  t h e  



warming curve leads t h e  s t r a i g h t  l i n e  f i t  t o  both curves, This  cou ld  w e l l  be 
due t o  t h e  d i f f e r e n c e  i n  temperature between the  sur face o f  t h e  p a i n t ,  and t h e  
p o i n t  o f  temperature measurement, or  i t  cou ld  be due t o  t h e  f a c t  t h a t  a1 1 o f  
t he  sur face vo l tage  measurements were made w h i l e  t h e  temperature o f  t h e  sample 
was charging. 

CONDUCTIVE PAINTS 

Four pa in ts ,  2 b lack and 2 white, mod i f i ed  t o  be conduct v , have been 
tes ted  i n  t h e  experimental f a c i l i t y  described i n  another paper l3 f .  For these 
t e s t s  t h e  p a i n t  samples were mounted so as t o  be i n  good thermal con tac t  w i t h  
t h e  l i q u i d  n i t rogen  p la te ,  bu t  e l e c t r i c a l l y  i s o l a t e d  from i t .  The experiment 
was c a r r i e d  o u t  i n  the  same manner as t h e  t e s t s  described above, except t h a t  
data was taken dur ing  bo th  warming and cool  i ng i n  1 , 5, 10, and 20 keV . The 
t e s t  m a t r i x  i s  shown i n  Table I. Typical  coo l i ng  and warming curves a r e  shown 
i n  F igures 4 and 5. The r a t e  o f  coo l ing  ( o r  warming) depends s t r o n g l y  on t h e  
r a t e  a t  which LN2 (o r  room temperature a i r )  i s  pushed i n t o  the  coo l i ng  f i x t u r e .  
These were ad jus ted  by hand t o  a1 low t h e  maximum t ime t o  be spent a t  each 
temperature data p o i n t .  Table I1  shows t h e  p a i n t  samples tes ted .  The r e s u l t s  
o f  extensive t e s t i n g  a r e  shown i n  the nex t  f o u r  f i g u r e s  (6,7,8,and 9 ) .  These 
show t h e  sur face p o t e n t i a l  as measured by a Monroe e l e c t r o s t a t i c  non-contact- 
i n g  vo l tage  probe. The e l e c t r o n  beam was removed by c l o s i n g  a mechanical va l ve  
between the  e l e c t r o n  source and t h e  sampl e du r ing  sur face vo l tage  measurements. 
The beam c u r r e n t  was adjusted t o  remain a t  approximately 1 nanoamp/cm2. The 
temperature was v a r i e d  us ing  the  low temperature f i x t u r e  described e a r l i e r .  

These r e s u l t s  show the re  i s  no s t rong  temperature dependence i n  the  
e l e c t r i c a l  c h a r a c t e r i z a t i o n  o f  these p a i n t  samples, b u t  the  sur face p o t e n t i a l  
was i n  excess o f  t h e  10 V d i f f e r e n t i a l  des i red  by the  G a l i l e o  p r o j e c t  f o r  
science cons idera t ions .  

One notab le  r e s u l t  i s  t h a t  there i s  no apparent temperature dependence 
t o  the  sur face p o t e n t i a l ,  which i s  a t  va r i ance  w i t h  expectat ions based on 
res i s tance  measurements. Resistance measurements vs temperature a t  JPL ( n o t  
publ ished)  show a 105 change i n  res i s tance  over t h e  same temperature range. 
There i s  no ready explanat ion f o r  t h i s  apparent discrepancy, b u t  i t  i n d i c a t e s  
t h a t  conduct ive p a i n t s  cannot be analyzed i n  terms o f  a simple E = I R  model. 

Another o f  t h e  i n t e r e s t i n g  quest ions r a i s e d  by these t e s t s  i s  t h e  apparent 
non - repea tab i l i t y  o f  t h e  t e s t  r e s u l t s  a t  1 keV. A f t e r  exerc is ing  t h e  sample 
i n  t he  5, 10 and 20 keV beams, and throughout t h e  temperature range, t h e  sample 
was re tu rned  t o  room temperature and exposed t o  a 1 keV beam. General ly,  t h e  
r e s u l t s  o f  t h e  l a s t  measurement a t  1 keV disagreed w i t h  the  i n i t i a l  data taken 
a t  room temperature and 1 keV. This  e f f e c t  could be t h e  same e f f e c t  we f i r s t  
no t iced i n  t e s t i n g  the  r e g u l a r  Chemglaze samples, except t h a t  these samples 
a r e  much more conduct ive, and so the e f f e c t  i s  n o t  as pronounced, however, our 
experiments w i t h  secondary emission descr ibed below suggest a more s u b t l e  
explanat ion.  

The t o t a l  back c u r r e n t  measured i n  a 1 keY beam i s  g ross l y  d i f f e r e n t  from 
the  expected beam c u r r e n t  even though t h e  sur face p o t e n t i a l  i s  approximate ly  
zero. This  i s  due t o  h igh  secondary emission a t  1 keV, I n  separate experiments 



on se lec ted  sainpl es a small b ias  was app l i ed  t o  the  sample t o  v e r i f y  t h a t  
secondary e lect rons were indeed respons ib le  fbr  t h e  low observed back c u r r e n t ,  
I n  these experiments the  c u r r e n t  c o l l e c t e d  by  the  wa l l  o f  the  chamber, as we l l  
as the  c u r r e n t  through the  sampl e were measured. The w a l l  c u r r e n t  should i n -  
crease as more secondaries a r e  emi t ted,  The c u r r e n t  through the  sample w i t h  
and w i thou t  a b ias  app l i ed  t o  t h e  back o f  t h e  sample were a l s o  measured. During 
these experiments the  temperature and e l e c t r o n  f l u x  were va r ied .  However, t h e  
temperature and f l u x  v a r i a t i o n s  d i d  n o t  have as s i g n i f i c a n t  an e f f e c t  as the  
t ime. F igu re  10 shows the  gradual inc rease i n  the  secondary emission c o e f f i c i e n t  
as a f u n c t i o n  o f  t ime as measured du r ing  these experiments. During t h i s  t ime a 
coo l i ng  and warming cyc le  took p lace w i t h  l i t t l e  apparent e f f e c t .  The l ong  
t ime constant  observed i s  apparent ly  due t o  t h e  na ture  o f  secondary emission 
i t s e l f .  For t h i s  pa in t ,  t h e  secondary emission process takes a considerable 
per iod  of t ime  t o  become es tab l ished when exposed t o  beams which cause h igh  
secondary emission. This  e f f e c t  undoubtedly p lays  a r o l e  i n  t he  observed 
discrepancy between samples exposed t o  1 keV e lec t rons  be fore  and a f t e r  exposure 
t o  o ther  energy e lec t rons .  

The most puzz l ing  r e s u l t  o f  t h i s  s tudy  i s  the  occasional measured p o s i t i v e  
sur face p o t e n t i a l s  a t  h igh  beam energies. Surface contaminat ion causing a ve ry  
t h i n  i n s u l a t i n g  sur face (perhaps caused by cyro-pumping o f  outgassed products 
on the  sample) cou ld  be responsib le,  s ince  20 keV e lec t rons  from a t h i n  i n s u l a t -  
i n g  sur face has been suggested as a poss ib le  mechanism. Another p o s s i b i l i t y  i s  
t h e  inaccuracy o f  t h e  vo l tage probe a t  such low p o t e n t i a l s ,  o r  i n  t he  presence 
o f  t he  plasma produced by the  h igh  energy e l e c t r o n  beam. 

CONCLUSION 

Conductive pa in t s  a r e  n o t  simple. They w i l l  r e q u i r e  more d e t a i l e d  study 
t o  understand t h e i r  behavior under e l e c t r o n  bombardment. A1 though they do n o t  
charge t o  any s i g n i f i c a n t  degree, they  do have ve ry  i n t e r e s t i n g  p r o p e r t i e s .  
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TABLE I. TABULAR LISTING OF MEASUREMENT CONDITIONS, TEMPS vs .  KeV 

ACCELERATING VOLTAGE, KeV 

TABLE 11. ESD-CONDUCTIVE PAINTS TESTED 

(Room Temp) 230C 

-1 0 

-45 

-88 

-1 27 

-1 55 

1 2 5 10 15 20 
------ 

X X X  X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X  X X x -  

PA1 NT 

Chemglaze, mod i f i ed  
2004 over 9922 pr imer 
w i t h  2% carbon b lack  

B o s t i c  F inch  463-14 

Zinc O r t h o t i t a n a t e  

Goddard NS43C 

COLOR 

Black 

Black 

White 

White 

METHOD USED TO MAKE 
CONDUCTIVE 

Carbon F i  11 e r  

Carbon F i  1 l e r  

Unknown 

Unknown 



-700 , I 1  1 I 1 

1 -"- 
CHEMG LAZE A -276 - 

h 
V) 

5 -500 - - 
0 
t 
A -400 - - 

- 

- 

- 

1 2  4 5  10 15 2 0 

B E A M  ENERGY (keV) -c 

FIGURE 1 

VOLTAGE AT 
END 0 F CHARGE 
w/20 k eV 
BEAM 

VOLTAGE WHEN CHARGED BY 5 k eV 
BEAM AT ROOM TEMPERATURE \ 

RTD RESISTANCE (R a T )  - 
FIGURE 2 



300V MEASUREMENT DURING 
RAPID CHANGE IN TEMPERATURE 

A FULL EQUILIBRIUM 
SURFACE POTENTIAL 

1 MEASUREMENT MADE 

d 
-300 1 OMEAWREMENT MADE 

DURING WARM UP 

RTD RESISTANCE (ohms)- T a R 

FIGURE 3 

TYPICAL WARM-UP 
7 p.s.i. DRY N 2  
PUSHING OUT LN2 

TIME MINUTES - 
FIGURE 4 



1 1 I I I I 1 1 1 
I 10 20 30 40 50 60 70 80 90 

T M  MINUTES - 
FIGURE 5 



+23 

FIGURE 6. SURFACE POTENTIAL CHEMGIAZE BLACK SAMPLE 2-4 
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