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SUMMARY 

Secondary e l e c t r o n  emission c o e f f i c i e n t s  have been measured on FEP-Teflon 
f o r  normal and obl ique  inc idence  i n  t he  presence of a normal e l e c t r i c  f i e l d .  
Such measurements r e q u i r e  knowledge of t h e  e l e c t r o s t a t i c  environment 
surrounding the specimen, and they r e q u i r e  c a l c u l a t i o n  of p a r t i c l e  
t r a j e c t o r i e s  such t h a t  p a r t i c l e  impact parameters  can be known. A s imu la t ion  
using a conformal mapping, a Green's i n t e g r a l ,  and a t r a j e c t o r y  gene ra to r  
provides  t h e  necessary mathematical support  f o r  the  measurements, which have 
been made with normal f i e l d s  of 1.5 and 2.7 kV/mn. When inc idence  i s  n o 3 3 1  
and energy exceeds t h e  c r i t i c a l  energy, t h e  c o e f f i c i e n t  i s  given by (VO/V) , 
and f o r  oblique inc idence  t h i s  express ion  may be d iv ided  by the  cos ine  of t h e  
angle.  The parameter V i s  a func t ion  of normal f i e l d .  0 

INTRODUCTION 

Experimental measurements of secondary e l e c t r o n  emission c o e f f i c i e n t s  
(SEEC) f o r  FEP-Teflon a r e  repor ted  here.  Two f e a t u r e s  of t h e  work make i t  
unique. Measurements made on a charged specimen a r e  a f f e c t e d  by t h e  s u r f a c e  
f i e l d ,  and they a r e  made a t  obl ique inc idence  such t h a t  t r a j e c t o r i e s  a r e  
inf luenced by t h e  e l e c t r i c  f i e l d s .  Two a c t i v i t i e s ,  experimental  measurements 
and computer s imula t ion ,  have been combined i n t o  a complementary procedure 
which y i e l d s  the des i red  r e s u l t s .  The s imula t ions ,  which have been descr ibed  
i n  r e f e rence  1 ,  a r e  reviewed he re  b r i e f l y ,  and t y p i c a l  measurements a r e  
descr ibed.  

Previous Work 

Katz e t  a1 ( r e f .  2 )  have developed a s p a c e c r a f t  charge modelling code 
NASCAP which uses  a func t iona l  form f o r  SEEC s i m i l a r  t o  t h e  s t r a g g l i n g  theory  
presented by Lye and Dekker ( r e f .  3 ) .  They a l s o  use  a func t iona l  dependence 
f o r  angle  of incidence s i m i l a r  t o  t h a t  proposed by Jonker ( r e f .  4 ) .  Yet 
experimental  measurements have g e n e r a l l y  not  been ava i l ab l e .  Quoc-Nguyen 
( r e f .  5 )  measured SEEC i n  normal f i e l d s  f o r  normal incidence,  f i nd ing  t h a t  t h e  
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c r i t i c a l  po in t  f o r  u n i t y  emission i s  a  f u n c t i o n  of s u r f a c e  f i e l d .  This  r e p o r t  
is  a  d i r e c t  ex tens ion  of t h e  work i n i t i a t e d  by him. 

Procedures 

The specimen of 0.12- FEP-Teflon i s  placed on a  f l a t  grounded platform 
which may be r o t a t e d  i n  a  c y l i n d r i c a l  s h e l l  a s  i l l u s t r a t e d  i n  f i g u r e  1. The 
specimen i s  o r i en t ed  normal t o  t he  f l u x  from a mono-energetic f l ood  gun and 
t h e  c y l i n d e r  i s  r o t a t e d  so  t h a t  a window is  placed above the  specimen. Af t e r  
a  s teady  s t a t e  is  reached, the flood gun i s  turned off and t h e  cy l inde r  i s  
aga in  r o t a t e d  s o  t h a t  the  specimen is enclosed i n  a  w e l l  def ined e l e c t r o s t a t i c  
environment. The specimen holds  its charge f o r  long periods of t i m e ;  decay 
dur ing  an experiment is negl ig ib le .  Discharging i s  done by exposing the  
specimen t o  t h e  f lood  gun while  t h e  f l o o d  gun p o t e n t i a l  is  gradual ly  reduced. 

The d i s t r i b u t i o n  of charge on t h e  specimen is  determined from an 
assessment of e l e c t r o n  t r a j e c t o r i e s  which come near  t o  but do not  s t r i k e  the  
specimen. The probing beam, which is i n j e c t e d  through a  s l o t  i n  the  c y l i n d e r ,  
has  a  width l e s s  than  0.2 mm and provides h ighly  reso lved  measurements. When 
t h e  beam does n o t  s t r i k e  the  specimen, it usua l ly  r e f l e c t s  back t o  t h e  
c y l i n d e r  where i t  is  de tec ted  wi th  f i n e  probe wires .  Measurements of beam 
e x i t  p o s i t i o n s  f o r  va r ious  i n j e c t i o n  p o i n t s  and i n j e c t i o n  v e l o c i t i e s  provide a  
b a s i s  f o r  determining t h e  p o t e n t i a l  d i s t r i b u t i o n  on the  specimen. The 
s imu la t ions  a r e  important i n  t h i s  phase of t h e  work. 

Once the  d i s t r i b u t i o n  of p o t e n t i a l  i s  known, impacting t r a j e c t o r i e s  can 
be s imulated f o r  t h e  purpose of ca l cu la t ing  impact po in t ,  impact angle ,  and 
impact ve loc i ty .  This  information i s  c r u c i a l  f o r  i n t e r p r e t i n g  the  
measurements of SEEC. Though SEEC is  r e l a t i v e l y  easy  t o  measure, a measured 
va lue  i s  of worth only when t h e  impact parameters a r e  known. 

The a c t u a l  measurements of SEEC a r e  accomplished by d i r e c t i n g  an e l e c t r o n  
pu l se  of known charge (about 1pC) a t  t he  speczmen and de t ec t ing  a  change of 
charge induced i n  t he  metal subs t r a t e  behind the  specimen. I f  t hese  charges 
a r e  designated a s  Qi and Qs, then the SEEC is  

Th i s  d e f i n i t i o n  c o l l e c t s  backsca t te r ing ,  i n e l a s t i c  s c a t t e r i n g ,  and t h e  low- 
energy SEEC i n t o  a  s i n g l e  parameter. 

SIMULAT ION 

The geometry of t he  experimental system, a  ha l f -cy l inder ,  was chosen f o r  
s e v e r a l  reasons,  one being experimental convenience. However t h e  choice  was 
p r imar i ly  r e l a t e d  t o  the  need f o r  s imu la t ing  t h e  experimental system wi th  a  
numerical ly  e f f i c i e n t  process .  The use of a  s u f f i c i e n t l y  long specimen ( a t  
l e a s t  equal  t o  the  diameter)  allowed c a l c u l a t i o n s  t o  be done i n  two i n s t e a d  of 



t h r e e  dimensions, and consequently,  a technique us ing  conformal mapping could 
be app l i ed .  By t h i s  method, t h e  ha l f -cy l inder  was e a s i l y  converted t o  a ha l f -  
p lane  where a Green's i n t e g r a l  y ie lded  e l e c t r i c  p o t e n t i a l .  Repeated 
a p p l i c a t i o n s  of t h i s  technique provided the  d a t a  needed by p a r t i c l e  t r a j e c t o r y  
t r a c i n g  rou t ines .  The methods descr ibed  he re  have been developed by Quoc- 
Nguyen ( r e f .  5) and Robinson and T i l l e y  ( r e f .  6 ) ,  and they  have been adapted 
t o  t h i s  geometry by Robinson ( r e f .  1 ) .  

Conformal Mapping 

I f  t h e  radius of a s emic i r c l e  i n  t he  upper h a l f  p lane  W i s  A then  the  
mapping 

2 
Z = 2W/{l+(W/A) ) (2 

conver t s  t h a t  semic i rc le  i n t o  the  upper ha l f  plane Z by opening i t  a t  t he  
po in t  W=iA. The p o t e n t i a l  of a po in t  i s  t h e  same i n  e i t h e r  plane but f i e l d s  
computed i n  t h e  Z p lane must be transformed according t o  the  equat ions 

E = SEX + TE 
U Y 

Ev =-TE + SE 
X Y 

where S and T are  def ined by 

Green's I n t e g r a l ,  Surface Potent ia1,and F i e l d s  

I n  t h e  Z-plane the p o t e n t i a l  a t  some po in t  (X,Y) i s  given by an i n t e g r a l  
over t h e  specimen's s u r f a c e  where p o t e n t i a l  on the  s u r f a c e  is  designated 
P'(X). The i n t e g r a l  i s  

The sur face  p o t e n t i a l  P'(X) has been expressed f o r  t h i s  work a s  a 
polynomial i n  X, the  transformed v a r i a b l e ,  r a t h e r  than  being expressed i n  
terms of U. The express ion  is  

where m i s  f i n i t e .  It has been assumed t h a t  P'(-B)=P'(B)=O and t h a t ,  
consequent ly,  the sum of even A ' s  i s  zero  and the  sum of odd A ' s  i s  zero. It 

i 
is  experimental ly  convenient t i a t  A. is the  p o t e n t i a l  a t  t h e  c e n t e r  of t h e  



specimen. Furthermore a l l  of t h e  odd Ai va lues  a r e  zero when the  p o t e n t i a l  i s  
symmetric about t he  o r i g i n ,  a common though not necessary experimental  
condi t ion .  

When the express ion  f o r  s u r f a c e  p o t e n t i a l  i s  s u b s t i t u t e d  i n t o  the  Green's 
i n t e g r a l ,  the  r e s u l t i n g  express ion  may be w r i t t e n  a s  

where 

and where L=-B-X and H=B-X. E l e c t r i c  f i e l d  components a r e  found from t h e  
nega t ive  gradien t  of t h e  p o t e n t i a l  and a r e  

where the  i n t e g r a l s  a r e  

Typ ica l ly  one s p e c i f i e s  t he  radius A, the  specimen width B ( a s  measured 
i n  t h e  conformed p lane) ,  t h e  c o e f f i c i e n t s  A , and some po in t  (U,V). Then a 
d i r e c t  procedure may be followed t o  obta in  t h e  requi red  r e s u l t s .  A conformal 
mapping y i e l d s  t he  po in t  Z (o r  X,Y) and t h e  t h r e e  i n t e g r a l s  a r e  evaluated.  
F i e l d  components s o  obtained a r e  thenmapped back t o  t he  o r i g i n a l  W plane. 

I n  t he  l i m i t  a s  YM, t h e  i n t e g r a l s  d iverge ,  but  an a n a l y t i c a l  l i m i t i n g  
procedure can be appl ied  t o  obta in  equations f o r  the  f i e l d s  on the  s u r f a c e  of 
t h e  specimen. 

DeVogelairel s Method 

T h i s  method, which i s  used t o  generate p a r t i c l e  t r a j e c t o r i e s ,  a p p l i e s  t o  
second o rde r  d i f f e r e n t i a l  equat ions  without e x p l i c i t  f i r s t  d e r i v a t i v e s  ( r e f .  
7) .  It i s  c o r r e c t  t o  f o u r t h  order  and uses  a r e l a t i v e l y  simple s t epp ing  
procedure. The coord ina tes  and ve loc i ty  components must be known a t  some t i m e  
t and a l s o  t h e  coord ina tes  must be known a t  t he  time corresponding t o  a ha l f -  
i 

s t e p  before  t . Fie ld  components a re  c a l c u l a t e d  a t  t h e s e  poin ts .  Then, f o r  
t h e  ~ - m o t i o n , ~ a  new ha l f - s t ep  (designated by h )  is  taken wi th  



where T  i s  the t i m e  s t e p ,  U i s  coord ina te ,  V i s  v e l o c i t y ,  E i s  f i e l d ,  and Q i s  
t h e  chargelmass r a t i o .  Usually F may be cons idered  t o  be u n i t y ,  though i t  i s  
ass igned  a  d i f f e r e n t  va lue  when a  change of t ime s t e p  i s  implemented. Af t e r  
t h e  ha l f - s t ep ,  t h e  f i e l d s  a t  t h e  new po in t  a r e  eva lua ted  and t h e  whole s t e p  i s  
completed with 

Equations s i m i l a r  t o  t h e s e  a r e  used s imul taneous ly  f o r  s t epp ing  i n  t h e  V- 
d i r e c t i o n .  Af te r  a  s t e p  has  been completed t h e  new v e l o c i t i e s  a r e  eva lua ted  
from t h e  U-equation 

and from a s imi l a r  V-equation. The s t epp ing  procedure i s  repea ted  a s  many 
t imes a s  needed t o  t r a c e  t he  complete t r a j e c t o r y .  

A s  t h e  p a r t i c l e  approaches t h e  specimen t h e  t i m e  increment i s  reduced by 
a  f a c t o r  of 4. This  i s  done by de f in ing  t h e  f a c t o r  F  t o  have a  va lue  114 f o r  
t h e  next  s t e p  only and by r ede f in ing  t h e  time s t e p  wi th  T=FT. Likewise f o r  
p a r t i c l e s  leaving t h e  reg ion  c l o s e  t o  t h e  specimen F i s  set equa l  t o  4 f o r  one 
time s t e p  only t o  cause an i nc rease  i n  the  s i z e  of t h e  t ime s t e p .  

S p e c i a l  procedures a r e  requi red  when t h e  t r a j e c t o r y  runs  i n t o  a  boundary. 
When t h e  p a r t i c l e  approaches t he  p lane  of t h e  specimen a  branch occurs  s o  t h a t  
t h e  t r a j e c t o r y  can be ended p r e c i s e l y  on the  plane. T h i s  i s  done by 
c a l c u l a t i n g  the value of t ime s t e p  r equ i r ed  f o r  t h e  l a s t  s t e p  and then by 
us ing  t h a t  time s t e p  i n  t h e  usua l  formulas. The t r a j e c t o r y  may a l s o  i n t e r s e c t  
t h e  c i r c u l a r  boundary. I n  t h i s  case  t he  t r a j e c t o r y  a t  t h e  l a s t  po in t  i n s i d e  
t h e  boundary is l i n e a r l y  extended u n t i l  t h e  boundary i s  crossed.  

Two d i f f e r e n t  subrout ines  have been developed t o  s t a r t  two d i f f e r e n t  
types  of t r a j e c t o r y .  I n  each ca se  t h e  given po in t  which r e p r e s e n t s  i n j e c t i o n  
of a  p a r t i c l e  i s  t r e a t e d  a s  a  preceding h a l f  s t e p  and t h e  r e f e r ence  p o i n t  is  
generated by a p p r o p r i a t e  equa t ions  which t ake  an  i n i t i a l  ha l f  s t e p .  One 
c a l c u l a t i o n  s t a r t s  from t h e  c i r c u l a r  boundary and corresponds t o  p a r t i c l e s  
i n j e c t e d  a t  t ha t  boundary. The o t h e r  s t a r t s  on t h e  s u r f a c e  of t h e  specimen 
and al lows the u s e r  t o  s p e c i f y  condi t ions  a t  t h a t  end of t h e  t r a j e c t o r y ,  which 
is t r aced  backwards from t h e  specimen t o  t h e  c y l i n d e r .  

The t r a j e c t o r y  t r a c i n g  r o u t i n e s  have been executed many t i m e s  f o r  a  
v a r i e t y  of condi t ions.  Figure 2 shows t y p i c a l  impact ing t r a j e c t o r i e s  f o r  
which t h e  specimen p o t e n t i a l  v a r i e s  a s  

and f o r  which t h e  p a r t i c l e  energy i s  1.56 t imes  t h e  p o t e n t i a l  a t  t h e  c e n t e r  of 
t h e  specimen. Figure 3 shows p a r t i c l e s  which have energy of 0.85 t i m e s  t h e  



p o t e n t i a l  a t  t h e  c e n t e r  of t he  specimen. 

EXPERIMENTAL PROCEDURES 

The system, shown i n  f i g u r e  1, was placed i n  a  s t a i n l e s s  b e l l  j a r  an$ 
evacuated by a  turbomolecular pump-to a  pressure  below t h e  gauge l i m i t  of 10 
t o r r .  Continuous pumping and operat ion of f i l amen t s  f o r  days a t  a  time 
assured  s t a b l e  and reproducib le  measurements. Both specimen platform and 
c y l i n d e r  were r o t a t e d  wi th  s t eppe r  motors which took 200 s t eps / r evo lu t ion .  
One s t e p  corresponded t o  a  motion of 0.8 mm a t  the  per iphery  of t h e  cy l inder .  
Th i s  system could be used i n  a  v a r i e t y  of modes f o r  measuring non-impacting 
t r a j e c t o r i e s ,  specimen su r f ace  p o t e n t i a l s ,  and SEEC f o r  impacting 
t r a j e c t o r i e s .  I n  an a u x i l i a r y  s e r i e s  of measurements a  small  Faraday cup was 
placed on the  p la t form next  t o  the  specimen so  t h a t  r e f e rence  measurements of 
SEEC could be made f o r  t he  condi t ions  t h a t  su r f ace  p o t e n t i a l  was zero  and t h a t  
inc idence  was normal. 

Probing Beam 

The beam was a  v e r s a t i l e  t o o l  f o r  making t h e  var ious  measurements of 
i n t e r e s t .  It was admitted t o  the  cy l inder  through a  s l o t  c u t  i n  t h e  cy l inde r  
such t h a t  no mat te r  how it r o t a t e d ,  the beam was not  blocked. The beam i t s e l f  
was shaped by s l i ts  and a p e r t u r e  p l a t e s  so  t h a t  i t  had a  c ros s  s e c t i o n  of 
about 2x0.2 rmn. The longer  dimension was o r i en t ed  p a r a l l e l  t o  t h e  a x i s  of t he  
cy l inde r ,  and the  beam was de f l ec t ed  i n  t h e  d i r e c t i o n  of t h e  s h o r t e r  
dimension. Sensor wires ,  mounted a t  t he  s l o t  of t he  c y l i n d e r ,  r o t a t e d  wi th  
the  cy l inde r  and de tec ted  the  beam e i t h e r  where i t  en tered  o r  where i t  e x i t e d ,  
i f  indeed i t  d id  r e t u r n  t o  t he  cyl inder .  

The beam was de f l ec t ed  by applying vol tage  between d e f l e c t i o n  p l a t e s  
which were loca t ed  behind t h e  beam o r i f i c e .  E i t h e r  s teady  s t a t e  o r  pulsed 
vo l t ages  could be appl ied ,  t he  steady s t a t e  being more u s e f u l  f o r  beams 
r e tu rn ing  t o  t h e  cy l inde r  and the  pulse  being u s e f u l  when t h e  specimen was t o  
be s t r u c k  b r i e f l y  wi th  a  measurable packet of charge. A t y p i c a l  pu lse  
du ra t ion  was 1 m s  though f o r  some cases  much longer  pu l se s  were used. Typica l  
beam cu r ren t  was 1nA and a t y p i c a l  charge packet was 1pC. By measuring 
d e f l e c t i o n  vo l t age  requi red  t o  move the beam from one sensor  wire  t o  another ,  
one could determine the  d e f l e c t i o n  f a c t o r  and thus c o r r e l a t e  s imulated and 
experiment a 1  d e f l e c t  ions .  

The mechanical alignment of t h e  gun was not  p e r f e c t  bu t  t h a t  problem was 
e a s i l y  reso lved  by a s s ign ing  the  condit ion of normal inc idence  t o  be t h a t  
d e f l e c t i o n  vo l t age  f o r  which a  beam re turned  t o  i t s  poin t  of o r i g i n .  This  
cond i t i on  was f o r  a  charged specimen which was r o t a t e d  s o  t h a t  i t  faced the  
beam. 



Surface  P o t e n t i a l  

The peak s u r f a c e  p o t e n t i a l ,  which i s  represented  by A , i s  determined 
experimental ly  be fo re  computer s imula t ions  can  be attempted. 'when t h e  s u r f a c e  
has been charged wi th  a f lood  gun p o t e n t i a l  of V t hen  the  d i f f e r e n c e ,  V -A 
i s  equal  t o  the c r i t i c a l  vo l t age  f o r  which t h e  SEEC i s  un i ty .   his v a ~ b e  Pi 
influenced by s u r f a c e  f i e l d  s t r e n g t h  which i n  t u r n  i s  r e l a t e d  t o  sample width; 
i t w a s  6 m m f o r t h i s w o r k .  The s u r f a c e  p o t e n t i a l w a s  def ined  experimental ly  
t o  be the  lowest poss ib l e  probing beam a c c e l e r a t i n g  p o t e n t i a l  f o r  which any 
p e r t u r b a t i o n  i n  s u r f a c e  charge ( o r  s u b s t r a t e  charge)  could be noted. Normal 
incidence a t  t h e  c e n t e r  of t h e  specimen i s  requi red  f o r  t h i s  measurement. 
Table 1 shows r e s u l t s  of s e v e r a l  such measurements and i t  a l s o  shows normal 
e l e c t r i c  f i e l d  E a t  t h e  c e n t e r  of t h e  specimen. 

v 

When A was determined, t hen  t r a j e c t o r i e s  of t he  form shown i n  f i g u r e  3 
0 could be compared wi th  experimental ly  measured t r a j e c t o r i e s .  The end p o i n t s  

of t h e  t r a j e c t o r i e s  were t h e  q u a n t i t i e s  compared. Figure 4 i l l u s t r a t e s  t h i s  
comparison f o r  a specimen o r i g i n a l l y  charged w i t h  a lOkV f l o o d  beam. The 
va r ious  curves correspond t o  d i f f e r e n t  choices  of t he  exponent M i n  t h e  
express ion  

and consequently,  f o r  t h i s  case  M should be 4 f o r  a b e s t  f i t .  More e l a b o r a t e  
func t ions  could be used f o r  P '  bu t  f o r  t h e  s tudy  of inc idence  on t h e  c e n t e r  of 
t h e  specimen, f u r t h e r  ref inements  were not  incorpora ted .  

SEEC f o r  Uncharged Specimen 

The experimental system does not con ta in  p rov i s ions  f o r  measuring t h e  
charge packet de l ive red  by t h e  pulsed probing beam. Consequently s e v e r a l  
measurements were made wi th  a small  Faraday cup i n s e r t e d  above t h e  specimen 
p la t form and o f f s e t  s l i g h t l y  s o  t h a t  t h e  beam could be d i r e c t e d  a l t e r n a t e l y  a t  
t h e  specimen and t h e  cup. These measurements were made a t  normal inc idence  
wi th  t h e  su r f ace  of t h e  specimen discharged s o  t h a t  beam t r a j e c t o r i e s  could be  
assumed t o  be s t r a i g h t  l i n e s .  When such measurements had been completed, t h e  
SEEC could be computed, and t h e  va lues  s o  determined could be used f o r  
c a l i b r a t i n g  the beam i n  t h e  absence of t h e  cup. 

For t h i s  s e r i e s  only, Q was measured wi th  t h e  cup and Q was t h e  charge 
s induced i n  t he  s u b s t r a t e  wheh t h e  beam s t r u c k  t h e  specimen. Then equat ion  1 

was appl ied  and the  SEEC s o  c a l c u l a t e d  were represented  by 

where V>V , VO=1.5kV, and N i s  approximately cons tan t .  Table 2 shows recorded 
d a t a  and ?he corresponding va lues  of N. It has been assumed t h a t  N-0.58 f o r  
normal incidence on the  uncharged specimen, and t h i s  va lue  i s  used i n  
c a l i b r a t i n g  a l l  o t h e r  measurements. 



SEEC f o r  Charged Specimen 

With no Faraday cup p re sen t ,  the specimen i s  charged and s t r u c k  wi th  a  
charge packet from t h e  probing beam. Thus Q i s  measured f o r  whatever s u r f a c e  
p o t e n t i a l  and ang le  of inc idence  a re  of f n t e r e s t .  Then t h e  s u r f a c e  i s  
discharged and s t r u c k  aga in  a t  normal incidence.  From t h i s  second 
measurement, Q i s  determined by using equat ion  17 and the  assumed va lue  of N. 
F i n a l l y  t h e  S E ~ C  i s  ca l cu la t ed  from equat ion 1. 

One requirement i s  t h a t  t h e  i n j e c t i o n  p o i n t  and i n j e c t i o n  v e l o c i t y  be 
c a r e f u l l y  c a l c u l a t e d  s o  t h a t  t h e  impact parameters w i l l  be a s  des i red .  The 
s imu la t ion  of t r a j e c t o r i e s  provides  the necessary d a t a  y e t  a n  u n c e r t a i n t y  does 
e x i s t  a s  t o  t h e  va lue  of d e f l e c t i o n  p l a t e  vo l t age  which corresponds t o  a  
r a d i a l  i n j e c t i o n  of t h e  beam. Idea l ly  t h i s  vo l t age  would be ze ro  y e t  s l i g h t  
misalignment can  cause i t  t o  be d i f f e r e n t .  Data shown l a t e r  i l l u s t r a t e  t h i s  
problem which, though not  s e r i o u s ,  might be a l l e v i a t e d  by breaking t h e  metal  
backing of t he  specimen i n t o  two zones. Then the  t r a n s i t i o n  p o i n t  between 
zones could be p r e c i s e l y  loca t ed  i n  terms of d e f l e c t i o n  p l a t e  vol tage .  

Another requirement i s  t h a t  t h e  charge packet be  s u f f i c i e n t l y  small  t h a t  
t h e  s u r f a c e  p o t e n t i a l  changes l i t t l e .  I f  a  second response a t  t h e  same s p o t  
i s  sma l l e r  t han  the  f i r s t ,  then t h e  p u l s e  s i z e  i s  t o o  l a rge .  Larger  pu l se s  
could be  used when the  SEEC was c lose  t o  u n i t y  than  otherwise because Q w a s  
zero  a t  t h e  u n i t y  condi t ion .  The cha l lenge  of measuring w i t h  smal l  cRarge 
packets  was t o  e s t a b l i s h  cond i t i ons  where d r i f t  and no i se  a s s o c i a t e d  wi th  t h e  
e l ec t rome te r  measurement d i d  no t  obscure t h e  data.  One source of no i se  may be 
micro-discharges on the  su r f ace  of t h e  specimen; no i se  was g r e a t e r  on a  
charged specimen than  on a n  uncharged specimen. Cleanl iness  i s  a l s o  
important.  D r i f t i n g  gene ra l ly  could be con t ro l l ed  by c a r e f u l l y  s h i e l d i n g  t h e  
c r i t i c a l  hardware from t h e  charged p a r t i c l e  environment c r e a t e d  by t h e  
e l e c t r o n  beam sources.  

EXPERIMENTAL DATA 

Measurements have been made f o r  va lues  of V shown i n  t a b l e  1 of 8 and 12 
kV where ang le s  of inc idence  have ranged a s  higfi a s  70 degrees.  F i r s t  i t  i s  
noted t h a t  t h e  form of equat ion  17 i s  a p p r o p r i a t e  f o r  normal-incidence d a t a  i f  
N=0.58 and V i s  1.85 kV f o r  a  sur face  p o t e n t i a l  of 6.15 kV ( o r  1.96 kV f o r  
10.04 kV). O Figure 5 i l l u s t r a t e s  the func t ion  and shows superimposed d a t a  
p o i n t s  f o r  t h e  case  where su r f ace  p o t e n t i a l  i s  6.15 kV. These normal 
inc idence  measurements a r e  made i n  the c e n t e r  of t he  specimen, y e t  l o c a t i o n  of 
t h e  p r e c i s e  c e n t e r  i s  not c r i t i c a l  as t h e  measured SEEC i s  i n s e n s i t i v e  t o  t he  
po in t  a t  which t h e  measurement i s  made. This  i s  because t h e  p o t e n t i a l  
func t ion  has  a  broad maximum i n  t h e  c e n t e r  and a l s o  because s l i g h t  dev ia t ions  
from normal inc idence  a r e  inconsequent ial .  

Also shown i n  f i g u r e  5 a r e  curves f o r  angles  of inc idence  8 which were 
obtained by d iv id ing  equat ion  17 by cos (8 )  according t o  t h e  u s u a l l y  assumed 



theory ( r e f .  4). These t h e o r e t i c a l  curves were used i n  cons t ruc t ing  f i g u r e  6 
which i l l u s t r a t e s  measurements a t  obl ique incidence.  

A l l  of f i g u r e  6 was generated from s imula t ion  and t h e  assumed t h e o r e t i c a l  
dependence upon 8 except  f o r  t h e  d a t a  p o i n t s  which have been superimposed. 
Except f o r  an  obvious l a t e r a l  s h i f t  of d a t a  p o i n t s ,  which i s  r e l a t e d  t o  
e s t a b l i s h i n g  a  r e f e rence  d e f l e c t i o n  vo l t age ,  t he  match between theory  and d a t a  
i s  e x c e l l e n t .  The d a t a  p o i n t s  themselves a r e  e a s i l y  l oca t ed  on t h e  f i g u r e  i n  
terms of t h e  experimental parameters  of Q s ,  Qi, 

and d e f l e c t i o n  vol tage .  
However some add i t i ona l  explana t ions  a r e  needed f o r  t h e  c a l c u l a t e d  curves.  
The experiment was s imulated by assuming a  form f o r  P' wi th  a n  exponent of 6 
a s  shown i n  equat ion 15. It was a l s o  assumed t h a t  t h e  parameters from t a b l e  1 
f o r  V =8  were appropriate .  F i n a l l y  i t  was assumed t h a t  t h e  impacting beam had 

f  an  energy of  9.5 keV as was t h e  case  f o r  t he  experiment. The i n j e c t i o n  p o i n t  
f o r  the  beam was chosen t o  cause a  45-degree impact angle  a t  t h e  c e n t e r  of t h e  
specimen and then numerous beams were s imulated where t h e  d e f l e c t i o n  ang le  of 
t h e  beam w a s  var ied ,  a s  shown i n  f i g u r e  2. Figure 6 shows t h e  s u r f a c e  
p o t e n t i a l  of the specimen, t h e  impact p o s i t i o n  f o r  each of s e v e r a l  s imulated 
beams, t he  impact angles  of each of those  beams, and d e f l e c t i o n  p l a t e  vo l t ages  
corresponding t o  each of t h e  simulated beams. Then from f i g u r e  5 t h e  
secondary emission c o e f f i c i e n t  was c a l c u l a t e d  f o r  combinations of s u r f a c e  
p o t e n t i a l  and angle of incidence.  The d a t a  shown i n  f i g u r e  6 i s  t y p i c a l  of 
many measurements which have been made. I t s  c h a r a c t e r i s t i c  i s  t h a t  t h e  
measured SEEC i s  much l a r g e r  off c e n t e r ,  where ang le  of inc idence  i s  g r e a t e r ,  
than  i n  t he  center  where the  impact energy i s  lowest.  It should be noted h e r e  
t h a t  t h e  s i d e  of t h e  specimen shown i s  t h e  s i d e  oppos i te  from t h e  beam source. 
The impacts on t h e  near  s i d e  of the  specimen a r e  a t  l e s s e r  angles  of inc idence  
and the  va lues  of SEEC a r e  corresponding lower. F i e ld  s t r e n g t h  i s  of course  
not  cons t an t  over the range of d a t a  shown but  f o r  t h i s  ca se  one may assume i t  
t o  be reasonably cons tan t  out t o  2 mm where t h e  t a n g e n t i a l  component becomes 
s i g n i f i c a n t  . 

Figure 5 ind ica t e s  t h a t  f o r  angles  of 70 degrees o r  more, t h e  c r i t i c a l  
po in t  may be a s  h igh  a s  10 kV. This  has  indeed been demonstrated by 
measurements with both of t h e  previous ly  s p e c i f i e d  charging condi t ions .  
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