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SUMMARY 

We have examined mathematical techniques to choose the energy and current 
density of monoenergetic beams to simulate the distributed spectra of plasmas in space. 
In the first approach, the differential current density spectrum of the plasma was divided 
into a number of energy bands and the beam energy and current were calculated for each 
band to provide a piecewise reproduction of the distributed spectrum. The second 
approach was to choose the beam energies and current densities to match the velocity 
moments of the plasma distribution function. The velocity moments are averages related 
to physical quantities such as particle density, flux, pressure, and energy flux, and have 
been used extensively to characterize the measured properties of plasmas in space. 
Combinations of one, two, and three beams were found to match two to six velocity 
moments of Maxwellian distributions. The same techniques also can be applied to other 
spectral shapes, and they were used to examine two-Maxwellian distributions. 

A simple computational model was used to compare the charging of a spacecraft 
by plasmas with distributed spectra and by monoenergetic beams. These calculations 
were made to gain a qualitative comparison of the approaches for choosing 
monoenergetic beams to simulate space plasmas. Although a close comparison was not 
expected when only a few beams were used to simulate the distributed spectrum of a 
plasma, some combinations of beams gave similar charging rates and equilibrium 
potentials. The equilibrium potentials found using beams to match velocity moments of a 
two-Maxwellian plasma generally were within a few kilovolts of charging by the 
distributed spectrum, but showed more divergence than the simulations of simple 
Maxwellian plasmas. 

INTRODUCTION 

Interactions between the plasmas in space and the surface and various subsystems 
of spacecraft are very complicated and have been the subject of considerable study over 
the past several years. Electrostatic charging,(l,2,3) for example, of a spacecraft's 
surface can result in discharges which can cause electromagnetic interference, 
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degradation of surface materials, and failures of sensitive components. Techniques to 
influence plasmaspacecraft interactions, such as on-board plasma generators and 
conductive coatings for dielectrics, are also being actively studied.(3) 

The plasma environment of space can be partially simulated in the laboratory 
using low-temperature plasma generators for studies of phenomena in the ionosphere and 
low-earth-orbit or combinations of electron and ion beams to simulate the conditions in 
high-altitude orbits. Several small space l a m a  simulation laboratories(e43, 4, and a P few largescale facilities are in operation( ) or being planned.(6) Laboratory simulation, 
however, is necessarily only a partial re-creation of the actual environment to which a 
spacecraft is subjected. 

The selection of the plasma generators or beams to simulate the space 
environment is now based on intuitive as well as scientific, engineering, and economic 
grounds. The simulation often represents only the most extreme case expected for a 
given spacecraft component. There are presently no established techniques for selecting 
a laboratory plasma environment to simulate the measured or postulated properties of 
plasmas in space. 

The object of this work is to investigate some mathematical techniques which 
could be used to choose the parameters of monoenergetic beams to simulate space 
plasmas. The moderate temperature plasmas of geomagnetic substorms serve as 
examples for simulation, since they are known to cause electrostatic charging on 
geosynchronous satellites. The multikiloelectronvolt energies and densities of a few 
particles per cubic centimeter require their simulation by monoenergetic beams rather 
than by low-energy plasmas with a continuous energy spectrum. 

BEAM SELECTION TECHNIQUES 

The plasma environment of space is characterized by a wide variety of particle 
energies, fluxes, species, and spectral shapes. The particle spectra vary with position in 
space, time, and solar activity. Models of the environment have been developed in 
various degrees of complexity, ranging from the definition of average plasma properties 
such as density and temperature at a given altitude to presentations of detailed spectra 
of rltypicaln plasma injection events recorded by instrumented satellites. 

In this section we examine techniques which can be used to specify the parameters 
of multiple monoenergetic charged particle beams which would provide a mathematically 
correct and physically plausible simulation of a given plasma environment. The 
techniques are based on the piecew ise reproduction of the shape of distributed energy 
spectra or by matching various averages of the velocity distribution functions by the 
monoenerget ic beams. 



In this study we assume that the space plasma to be simulated is of high enough 
energy and low enough density so that collective effects in the plasma can be neglected. 
More precisely, the Debye length of the plasma is considerably greater than typical 
dimensions of a spacecraft. This assumption is justified for the space environment 
outside the plasmasphere during geomagnetic substorms when strong spacecraft charging 
events are recorded. 

Piecewise' Spectral Reproduction 

The simplest and most obvious method to simulate a distributed spectrum is to 
break the spectrum into several bands and provide monoenergetic beams with appropriate 
currents and energies to reproduce the distribution in a "piecewise" manner. A very 
close reproduction of the distributed spectrum can be made in this way, provided there is 
a sufficient number of available beams. 

With a limited number of beams, a problem arises on the choice of the energy 
boundaries between the parts of the spectrum to be simulated. Possible choices include 
fractions or multiples of the average energy (temperature) or velocity, or boundaries 
which divide the particle flux into equal fractions of the total flux. A given spectrum 
may also be divided to account for particular features, such as a high energy "tail" of the 
distribution function. 

The principles involved in piecewise spectral reproduction can be illustrated by 
considering a Maxwellian distribution of particle energies. The differential energy 
spectrum of current density crossing an arbitrary surface is given by 

where 

is the total current density q and m are the charge and mass of the particles. 

Integrating Eq. (1) over a range of energy bounded by El and E2, we find 



This current density must be supplied by a monoenergetic beam with an energy 
between El and E2 to simulate the corresponding part of the distributed spectrum. The 
energy of the beam can be chosen in a number of ways; a relatively simple choice is to  
use the value found by averaging over the differential energy spectrum of the current 
density. 

E 2 a - 
E (ElIE2) = [2 - (3) 

j (El ,E2) 

Integration of Eq. (3) gives, 

Table 1 gives values for j(E1,E2)ljo and E(E1,E2) for the case of a 10 keV 
Maxwellian spectrum divided into four ranges of energy with boundaries a t  0, 7.5, 15, and 
30 keV. 

Velocity Moments 

A plasma can be characterized by various averages of the velocity distributions of 
its constituent particles. In general, the "velocity moments" of a given distribution 
function, f(v), a re  defined by 

2 = 4 6 Vk f v civ 

where the  4 nv2dv term represents an infinitesimal element in (isotropic) velocity space. 
The velocity moments, Mk, can be related to  physical averages for several values 

k* MI, M2, and MQ are related, respectively, to  the average number 
density <N>, particle flux, <NF>, pressure, <P>, and energy flux, <EF>, of the given 
particle type in the  plasma. 



The average speed, <v>, in equation (6) is defined by 

The expressions on the right-hand side of equation (6) are given for the case of a 
Maxwellian velocity distribution, 



where n, m, and T are respectively the number density, mass, and temperature of the 
particles and k is Boltzmann's constant. 

A useful method for characterizing a non-Maxwellian plasma ' to define effective 
temperatures which are related to ratios of the velocity moments?) The average and 
RMS temperatures are given by 

The two temperatures are equal when the velocity distribution is Maxwellian. 

Monoenergetic Beams to Match Velocity Moments 

A technique to simulate a plasma with a distributed velocity distribution is to 
choose the velocities and particle densities of mononergetic beams so that their velocity 
moments match those of the plasma. Under these conditions, the average parameters of 
the beams, such as number density, pressure, or energy flux, are equal to those of ihe 
plasma component under simulation. 

In general, a single beam can match two moments of the distributed spectrum, so 
that two beams can match four moments, three beams, six moments, etc. As discussed 
later, it is also possible to overspecify the problem and use more than the minimum 
number of beams to match a given number of velocity moments. 

A single monoenergetic beam can match two moments according to the 
simultaneous equations, 

n v j - ~  b b  
1 

(j f k) 

where nb and vb are the density and velocity of the beam particles. 

For example, when the zeroth (number density) and second (pressure) moments are 
chosen, 

n = n  
b  



or, in terms,  of beam energy, Eb, 

If t h e  first (number flux) and third (energy flux) moments  a r e  used, 

The densities and velocities of two  monoenergetic beams c a n  be found t o  match 
t h e  zeroth  through third velocity moments of t h e  distr ibuted spectrum by solving four 
simultaneous equations: 

where n l ,  n2, v l ,  and v2 a r e  t h e  densities and velocit ies of t h e  beams, and t h e  velocity 
moments of the  distr ibuted spectrum have been replaced by relat ions (7), (91, and (10). 
Boltzmann's constant, k, has been taken t o  be  unity. 

The velocities and densities of the  monoenergetic beams c a n  be found analytically, 



For a Maxwellian plasma, where TAV = TRMS = T, equation (17) simplifies 
somewhat, 

The beam densities and energies are then found to be 

Six moments of the distributed spectrum can be used to compute the densities and 
velocities of three monoenergetic beams. No analytical solutions have been found for 
this case, but iterative techniques can be used to find solutions of the set of six 
simultaneous, nonlinear equations. 

We have used an iterative minimization procedure@) to find the beam velocities 
and densities in terms of the average speed and density of the plasma particles. For the 
case of a Maxwellian plasma with temperature, T, the beam densities and energies are 

Different values will be found for other types of velocity distribution functions, 
but the method used to compute the Maxwellian results is general for all realistic 
spectral shapes. 



Two-Maxwellian Plasmas 

Gar re t t  showed t h a t  a two-Maxwellian f i t  is o f ten  a good r e p  esenta t ion of plasma 
distribution functions measured during geomagnetic substorms.fg) The density and 
t empera tu re  of each  Maxwellian component can  be found f rom four velocity moments of 
t h e  measured spectrum. I t  is possible, in principle, t o  find three-Maxwellian f i t s  which 
match  six moments, although the  e f f e c t s  of e r ro rs  in measurement of the  plasma 
spectrum become increasingly exaggerated when computing t h e  high-order moments. I t  
should also be possible t o  find multiple-Maxwellian least-square f i t s  directly from t h e  
measured distribution functions without computing t h e  velocity moments of t h e  data. 

A two-Maxwellian distribution has  average and RMS temperatures  given by 

where n l ,  n2, TI, and Tq a r e  t h e  respective densities and temperatures  of t h e  two  
components of the spectrum. 

A single monoenergetic beam can  match t w o  velocity moments of t h e  distr ibuted 
spectrum if i ts  density and energy a r e  chosen according t o  equations (12)- (15) above. 
For example,  if t h e  beam density is equal t o  t h e  t o t a l  plasma density, n l +  n2, and i t s  
energy is 312 TAV, then t h e  zeroth  and second velocity moments of t h e  two-Maxwellian 
plasma and the  monoenergetic beam a r e  equal. 

Two methods exist  for matching t h e  velocity moments of a two-Maxwellian 
distribution by two monoenergetic beams. First,  t h e  energy and density of each beam 
c a n  b e  chosen individually t o  match two  moments of each of t h e  Maxwellian components 
of the  spectrum. In this case, equations (12)-(15) would be employed along with the  
densit ies and temperatures of t h e  two-Maxwellian fit.  

The second approach is t o  use the  average and RMS temperatures  of the  
two-Maxwellian f i t ,  equations (23) and (241, and t o  calcula te  t h e  beam velocit ies and 
densit ies from equations (18) and (18). In both cases, as many as four moments of t h e  
two-Maxwellian distribution function can  be  matched by two  monoenergetic beams. In 
p rac t i ca l  situations, physical considerations would be required t o  make a choice between 
t h e  two  methods o f  matching velocity moments. 



The moments of a two-Maxwellian distribution function can be matched in several 
different combinations with multiple monoenergetic beams. As in the two-beam case, 
each Maxwellian component of the plasma can have one or more beams assigned to  it  
which individually match velocity moments. For six-moment matching, three beam 
energies and densities could be selected using equation (22) for each component, and a 
total of six beam energies would be required t o  simulate the two-Maxwellian plasma. As 
mentioned above, the computed values of the zeroth through fifth moment of the full 
spectrum can also be used directly to find three beam energies and densities through the 
iterative minimization procedure. 

Arbitrarily Assigned Beam Energies 

The velocity moments of a measured distribution function can also be matched by 
monoenergetic beams whose velocities a re  chosen arbitrarily. When the beam velocities 
are fixed, then it is only a matter of solving a set of linear simultaneous equations for 
the beam densities. It should be pointed out that not all combinations of beam velocity 
may be chosen, because negative, and therefore unphysical, solutions for the beam 
densities can be obtained in some cases. In other cases, the envelope of beam densities is 
far from being a smooth function of the  beam velocity spectrum. The unphysical and 
intuitively unsatisfying results using arbitrarily assigned beam energies cast doubt on the 
usefulness of this approach to  match velocity moments of distributed spectra. 

SPACECRAFT CHARGING CALCULATIONS 

The previous section presented some mathematical techniques to relate the 
characteristics of undisturbed plasmas t o  those of one or more monoenergetic beams of 
charged particles. It was assumed that the plasma or beams produced a flux of particles 
a t  a given surface, although no interactions between the particles and the surface were 
considered. 

In this section we shall compare the electrostatic charging produced by plasmas 
and various combinations of monoenergetic electron and ion beams using a model which 
accounts for several of the interactions between the incident charged particles and a 
"typical" spacecraft. The spacecraft charging calculations are, of course, only one of 
several possible approaches for making a qualitative comparison of the effects of 
plasmas and combinations of monoenergetic beams. A spacecraft simulation facility, 
however, will devote a considerable amount of i ts  effort t o  the study of the effects of 
electrostatic charging, and this choice for comparison can be justified on these grounds. 



CHARGING MODEL 

The spacecraft charging model developed by ~ar re t t ( lO)  calculates the 
equilibrium potential of a surface which receives isotropic fluxes of electrons and ions 
with arbitrary energy spectra and which loses charge by secondary electron emission, 
electron backscatter, and photoelectric emission. The model has been rather successful 
in predicting the potential of high-altitude satellites instrumented to measure the 
differential energy spectra of electrons and protons in geomagnetic substorm plasmas(ll). 

The model assumes that the spacecraft can be represented as a spherical 
Langmuir probe in a plasma whose Debye length is much greater than the dimensions of 
the probe. The energy spectra of the plasma electrons and ions are divided into 62 
energy "binsn, and the flux of charged particles to the surface calculated, taking into 
account the electrostatic potential of the satellite and conservation of mass. 
Maxwellian, two-Maxwellian, and arbitrary spectra observed from the spacecraft's 
instrumentation can be loaded into the energy bins. 

Secondary electron emission from electron and ion bombardment and electron 
backscatter are calculated as a function of the incident particle flux and the measured 
energy dependence of the secondary emission and backscatter coefficients of aluminum. 
Corrections for the heterogeneous surface of an actual spacecraft are made by small 
adjustments of these coefficients to bring the calculated potential of the satellite equal 
to its measured value when the satellite is in "typicaln plasma conditions. Charge losses 
by photoemission are included by an empirical formula. 

We have modified the model in two ways. First, the time dependence of charging 
was included by representing the satellite as an isolated spherical capacitor. The amount 
of charge gained and lost by the surface is calculated for short increments of time in 
which the potential is held constant. The net gain of charge is then used to compute the 
new value of potential to be used during the following time increment. This procedure is 
repeated until the potential of the model satellite does not vary in succeeding increments 
of time. 

The second modification was used only for potential calculations of the model 
when irradiated by monoenergetic, initially parallel beams of noninteracting charged 
particles. It accounts for the electrostatic deflection of the beams in the electric field 
of the charged body which attracts oppositely charged particles and repels particles of 
the same sign. 

The total current to a surface of arbitrary shape in a parallel beam is simply the 
product of the current density, j, and the geometric cross section, A, in a plane 
perpendicular to the current density vector. If the initially parallel beam is deflected by 
a symmetrical potential well, the deflection can be represented as an ''effective" 
cross-sectional area which depends on the strength of the field and the kinetic energy 
and charge of the particles. The effective area of a spherical conductor of radius R is, 



A = 0 
e f f  

where Qs is the (signed) potential of the sphere, and q and E are the (signed) charge and 
initial kinetic energy of the incident charged particles. 

For the charging calculations, the electron and ion current to the model satellite 
was set equal to the sum of the currents from the monoenergetic beams, each of which 
was given by Ii = ji Aeff where ji is the unperturbed current density of the ith beam with 
energy Ei. 

The secondary emission current from electron and ion bombardment and the 
electron backscattering were calculated as a function of the energy of the incident 
particles by the same subroutines used by Garrett's model for distributed energy spectra. 
No photoemission was included in the spacecraft charging calculations in order to 
simplify comparison of the results between monoenergetic beams and distributed spectra. 

Results 

The spacecraft charging model was used to calculate the potential of a spherical 
satellite with a radius of 1 meter and initial potential of zero. The charging by plasmas 
with several different electron and ion temperatures were compared to charging by 
beams whose energies and current densities were selected by the methods discussed 
above. Table 2 presents the parameters of some of the Maxwellian plasmas and beams 
and for the charging calculations. 

Charging by single monoenergetic electron and proton beams and Maxwellian 
plasma was computed for several beam energies and plasma temperatures. The current 
densities and energies were selected so that the first (number flux) and third (energy 
flux) velocity moments of the monoenergetic beams matched those of the Maxwellian 
plasmas, equations (14) and (15). For this case, the beam energies were twice the 
corresponding plasma temperature. 

where n and T are the density and temperature of the Maxwellian plasma component, q 
and m are the charge and mass of the plasma and beam particles (assumed the same 
species), and Eb and jb are the undisturbed energy and current density of the beam. 



Figure 1 shows the charging of the model satellite with a radius of 1 meter under 
irradiation by single 20 keV electron and proton beams and by a hydrogen plasma in which 
the electron and ion temperatures are 10 keV. It can be seen that the charging rate and 
equilibrium potential of the satellite is higher when exposed to the monoenergetic beams, 
although some differences are to be expected because of the important influence of the 
secondary electron emission coefficients on the charging process. 

The equilibrium potentials found from calculations of charging by Maxwellian 
plasma and beams with energies and current densities given by equation (25) are 
compared in figure 2. The correspondence is surprisingly good, considering the crudeness 
of simulating a Maxwellian velocity distribution by a single monoenergetic beam. 

Figure 3 shows calculations of charging by a Maxwellian plasma with an electron 
temperature of 10 keV and an ion (proton) temperature of 20 keV. Charging by electron 
beams with an energy of 20 keV and proton beams of 40 keV and current densities for 
each component given by equation (25) are also shown. In this case, the equilibrium 
potential in the Maxwellian plasma is somewhat higher than under irradiation by the 
beams. 

The energies and densities required for two beams to match four velocity 
moments of a Maxwellian plasma are given in equations (20) and (21). We have 
calculated the charging by two electron and proton beams and in Maxwellian plasmas. 

Figure 4 shows the results of the calculations for electron and ion beams with 
energies of 5.69 keV and 30.1 keV and for a Maxwellian plasma with electron and ion 
temperatures of 10 keV. The equilibrium potential of the satellite model is more than 2 
kV greater for charging by the beams than by the plasma, although the charging rate is 
about equal for both cases from 0 to 0.05 seconds. 

Charging by three monoenergetic electron and three monoenergetic electron and 
ion beams whose velocity moments match six moments of a Maxwellian plasma was 
computed using the spacecraft charging model. The beam energies and currents were 
found from equations (22) to match the velocity moments of a Maxwellian hydrogen 
plasma with an electron and ion temperature of 10 keV. 

The results of the charging calculations are shown in figure 5. There is very close 
agreement bet ween the charging rates and equilibrium potentials for both the 
three-beam and Maxwellian plasma cases. 

The charging of the satellite model was calculated using beams chosen to simulate 
the differential energy spectrum of the current density of a Maxwellian plasma. As 
discuqed above, the energy distribution was broken into four parts and the current 
density and average energy of each part computed, using equations (2) and (4). 



Figure 6 shows the charging using the four-beam solution given in Table 1 
compared with charging by a Maxwellian plasma with electron and ion temperatures of 
10 keV. I t  is somewhat surprising that the equilibrium potential found with four electron 
and ion beams chosen t o  mimic the spectral shape of the Maxwellian plasma is not a s  
close as with other cases with fewer beams. 

Beams and Two-Maxwellian Plasma 

The velocity distribution of a non-Maxwellian plasma can be approximated by a 
two-Maxwellian distribution function, each component of the distribution being 
characterized by a temperature and a particle density. W e  have computed the charging 
of the  satellite model in a plasma with a two-Maxwellian electron distribution function 
and single-Maxwellian ions. The two electron components have temperatures of 10 keV 
and 30 keV, and densities of 3.0 and 0.43 cm-3, respectively. The proton plasma 
has a temperature of 10 keV and has a number density equal t o  the total electron density. 

We have compared the charging by the two-Maxwellian plasma to  that  of several 
combinations of monoenergetic beams. Table 3 shows the beam energies, current 
densities, and resultant equilibrium potential of the  satellite model. 

The equilibrium potential found with a single electron beam is presented to  show 
the effect of removing ions from the simulation. Without the ion component, the 
satellite model charges until the secondary electron emission and backscatter are equal 
to  the  incident electron flux. The equilibrium potential is close to  that  of the electron 
beam because the s e  ondary electron emission coefficient peaks a t  an energy of a few 
hundred electronvoltsrlo) and is small a t  higher energies. 

The single-electron and single-ion beam energies and currents in Table 3 were 
chosen t o  match two velocity moments of the two-Maxwellian plasma. The two-electron 
and single-ion beam energies and currents match the first and third velocity moments 
(particle and energy flux) of each component of the  distribution functions. 

The energies and currents of the two-electron and two-ion beam case were found, 
using equations (17) and (la), to match four velocity moments of the distribution 
functions, based on the average and RMS temperatures of the plasma particles. 

The discrepancies between the calculations of equilibrium potential in the 
two-Maxwellian plasma and in monoenergetic beams are somewhat greater than those 
found with a single-Maxwellian plasma. The difference may be caused by the higher 
temperature component of the electron plasma, which skews the second and third 
velocity moments of the electron distribution function. The high-energy electron beams 
required to  match these velocity moments apparently have a strong influence on the 
equilibrium potential of the model. 



The calculations give a qualitative idea of the charging which would be observed 
in a spacecraft testing facility in which monoenergetic beams were used to  simulate 
space plasmas with distributed energy spectra. As expected, the equilibrium potential of 
the spacecraft under test, and therefore the charge density on i t s  surface, is only a 
function of the electron and ion beam energies and currents. An important resul.t, 
however, is the observation that the monoenergetic beams can be chosen to  match 
several velocity moments of a distributed spectrum and, a t  the same time, produce the 
same charge density on the spacecraft. Thus, surface phenomena which are influenced, 
for example, by energy flux as well as  charge density can be investigated in a laboratory 
facility with a reasonable degree of confidence in the simulation fidelity. 

It should be made clear that the charging model used here is a very simple one and 
does not account for the complex geometry or surface details of a real  spacecraft. More 
complicated charging codes exist, however, which could be used to make more detailed 
comparisons o s acecraft charging by monoenergetic beams and space plasmas. The 
NASCAP codefi2f for example, is probably the most ambitious at tempt to  represent the 
geometrical and surface configuration of real satellites in the environment of 
geosynchronous orbit. Modifications of NASCAP would be required to calculate the 
charging of a threedimensional object under irradiation by beams of charged particles, 
but it  is likely that NASCAP would be a useful tool for comparing the conditions of 
laboratory simulation t o  those of space. 

The author gratefully acknowledges the significant contributions to the work 
reported here by Betty A. Reid, Stephen N. Bunker and Steven H. Face. 

REFERENCES 

A. Rosen, editor, Spacecraft Charging by Magnetospheric Plasmas, (M.I.T. Press, 
Cambridge, Massachusetts, 1975). 

C.P. Pike and R.R. Lovell, editors, Proc. of the  Spacecraft Charging Technology 
Conference, Report No. AFGL-TR-77-0051, Air Force Geophysics Laboratory, 
Hanscom AFB, Mass., 1977. 

R.C. Finke and C.P. Pike, editors, Spacecraft Charging Technology - 1978, NASA 
Conference Publication 2071, NASA Lewis Research Center, Cleveland, Ohio, 
1979. 

F.D. Berkopec, N. John Stevens, and J.C. Sturman, "The Lewis Research Center 
Geomagnetic Substorm Simulation Facility", Report No. NASA TM X-73602, 
NASA Lewis Research Center, Cleveland, Ohio, 1976. 

O.L. Pearson, "Modification of a Very Large Thermal-Vacuum Test Chamber for 
Ionosphere and Plasmasphere Simulationtt, American Institute of Aeronautics and 
Astronautics, Inc., New York, Paper 78-1625, 1978. 



W. H ~ l ~ e r s o n ,  ffModifications of Ionospheric Simulation Capability. Volume 1: 
Studyn, Report No. FR-60021, Spire Corporation, Bedford, Massachusetts, 1979. 

H.B. Garrett ,  E.G. Mullen, E. Ziemba, and S.E. DeForest, ttModeling of the 
Geosynchronous Orbit Plasma Environment - Part  2", Report No. 
AFGL-TR-78-0304, Air Force Geophysics Laboratory, Hanscom AFB, 
Massachusetts, 1978. 

P.R. Bevington, Data Reduction and Error Analysis for the  Physical Sciences 
(McGraw-Hill Book Company, New York, 1969), Ch. 11. 

H.B. Garrett ,  ffModeling of the Geosynchronous Orbit Plasma Environment - Par t  
lft, Report No. AFGL-TR-77-0288, Air Force Geophysics Laboratory, Hanscom 
AFB, Massachusetts, 1977. 

H.B. Garrett ,  %pacecraft Potential Calculations - A Modelff, Report No. 
AFGL-TR-78-0116, Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1978. 

H.B. Garret t  and S.E.Deforest, J. Geophys. Res. 84, 2083 (1979). 

I. Katz. J.J. Cassidv, M.J. Mandell, G.W. Schnuell, P.G. Steen, and J.C. Roche, 
"The capabilities o i  t he  NASA ~habg ing  Analyzer Programtt, spacecraf t  Charging 
Technology - 1978 (see Ref. 3). 

TABLE 1. PIECEWISE REPRODUCTION OF MAXWELLIAN 
SPECTRUM BY FOUR BEAMS 

Maxwellian Temperature = 10 keV 

Normalized 
Energy Boundaries Current Density Beam Energy 

E 1 , ~ 2  (keV) j(Ei,E2)/jo E(E1,Ez) (keV) 



TABLE 2. SPACECRAFT CHARGING BY MAXWELLIAN 
PLASMAS AND MONOENERGETIC BEAMS 

PLASMA 

Electrons: Te = 10 keV, je = 1.0 nA/cm 2 

Ions: Ti = 10 keV, ji = 0.023 n ~ / c r n ~  

Electrons: T = 10 keV, je = 1.0 nA/crn 2 e 
Ions: Ti = 20 keV, ji = 0.033 nA/crn 2 

BEAMS 

1 Electron: Ee = 20 keV 

je = nA/cm 2 

1 Ion: Ei = 20 keV 

ji = 0.023 nA/cm 2 

1 Electron: Ee = 20 keV 

je = 1.0 nA/cm 2 

1 Ion: Ei = 40 keV 

j. = 0.033 nA/cm 2 
1 

2 Electron: Eel = 5.69 keV 

je2 = 0.41 nA/crn 2 

Ee2 = 30.1 keV 

je2 = 0.59 nA/crn 2 

2 Ion: Eil = 5.69 keV 

jil = 0.0096 nA/crn 2 

Ei2 = 30.1 keV 

ji2 = 0.014 nA/crn 2 

3 Electron: Eel = 3.03 keV .. 

--  
3 Ion: Eil = 3.03 keV 

jil = 0.0037 nA/crn 2 



TABLE 3. SPACECRAFT CHARGING BY TWO-MAXWELLIAN 
PLASMA AND MONOENERGETIC BEAMS 

PLASMA 

Electrons: Tel = 10 keV, jel = 0.8 nA/cm 
2 

T = 30 keV, j = 0.2 nA/cm 2 = -14.0 kV 
( q A v  = 12.52 t e v  
(Te)RMS = 14.0 keV 

Ions : Ti = 10 keV, ji = 0.021 nA/crn 2 

BEAMS 

1 Electron Ee = 2(TeIRMS = 28.0 keV 

1 Electron Ee = 312 (TelAv j18.8 keV 

je = 1.1 nA/cm 

1 Ion Ei = 3/2 Ti = 15 keV 

ji = 0.023 nA/cm 2 

1 Electron Ee = 2(Te)RMS ; 28.0 keV 

je = 1.0 nA/cm 

1 Ion Ei = 2 Ti = 20 keV 

ji = 0.021 nA/cm 2 

2 Electron Eel = 2 Tel = 20 keV 

jel = 0.8 nA/cm 2 

Ee2 = 2 Te2 = 60 keV 

je2 = 0.2 nA/cm 
2 

1 Ion Ei = 2 Ti = 20 keV 

j. = 0.021 n ~ / c m ~  
1 

2 Electron Eel = 7.92 keV, jel = 0.54 nA/crn 2 

Ee2 = 51.9 keV, je2= 0.46 nA/cm 
2 

2 qes = -19.2 kV 
2 Ion E. = 5.69 keV, jil = 0.0096 nA/cm 

11 
Ei2 = 30.07 keV, ji2 = 0.014 n ~ / c r n l  



TIME (recondr) 

F I G U R E  1. S P A C E C R A F T  CHARGING BY 10 Lev M A X W E L U A N  
PLASMA A N D  M Lev ELECTRON A N D  ION BEAMS 

x 
SPACECRAFT CHARGING 

BY MAXWELLIAN PLASMAS 

/ MONOENERGETIC YA 

ENERGY (keV) 

40 

ELECTRON AND ION TEMPERATURE (kaV) 

FIGURE 2. EQUILIBRIUM POTENTIAL IN MAXWELWAN PLASMAS 
A N D  SINGLE ELECTRON A N D  ION BEAMS 
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