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SUMMARY 

The'charging and discharging behavior of square, planar samples 6f a i l -  
vered, f luorinated ethylene-propylene (FkP) $eflon themal  control  tape was 
meagured. The equilibrium voltage prof i les  scaled with the Width of the  sam- 
ple.  A wide range of discharge pulse charac te r i s t i cs  was oboerved, and the 
area dependence@ of the peak current,  charge, and pulse widths a r e  described. 
The obsented scal ing of the peak currente with area was weaker than tha t  pre- 
viously reported. The discharge parameters were observed t o  depend etrongly on 
the  grounding impedance and the beaut voltag&. Preliminary r e su l t s  suggest t ha t  
measuring only the return-current-pulse charac te r ie t ics  is  not edequate t o  de- 
sc r ibe  the spacecraft  discharging behavior of t h i s  material.  The seame between 
s t r i p s  of tape appear t o  play a fundamental r o l e  i n  determining the discharging 
behavior. An approximate propagation veloci ty  fo r  the charge cleanoff was ex- 
t racted from the data.  The samples - 232, 1265, and 5058 square centimeters i n  
area - were exposed a t  ambient teinpetaeure t o  a 1- t o  2-n4l/cm2 electron beam a t  
energies of 10, 15, and 20 ki tovol ts  i n  a 19-meter-long by 4.6-meter-diameter 
simu1atiori f a c i l i t y  a t  the L e w i s  Research Center. 

It has been c lear  from the beginning of the  spacecraft  charging investiga- 
t i on  t ha t  an understanding of the geometric scal ing laws tha t  describe charging 
phenomena is of fundamental importance. Larger systems a re  being b u i l t ,  and 
even larger  ones a re  being ser iously  proposed fo r  future  missions. Worse-case 
calculat .~ons and er t rapolat ioas  froni e r i s t l n g  d a t a  have a limited r e l i a b i l i t y  
aad u t i l i t y .  Therefore, experimental s tudies  w e t  be undertaken with larger  
areas of engineering materiel than previously tes ted,  There is  a l so  ad inade- 
quate theore t ica l  understanding of the  discharge process. An experimental 
etudy of the var ia t ion  with area of the parameters t ha t  dedcribe the  digcharge 
process ehould provide important clues t o  guide the mathemtical  modelichg e f -  
f o r t .  ' Some eignif icant  experimental meaetirements of area e f fec t s  have been 
reported . i a  the l i t e r a t u r e  (refs.  1 and 2). Belmain (ref .  1) has systemati 
cally.investiget.ed area e f fec t s  i n  a var ie ty  of spacecraft  materials. H i s  
work was confined t o  areas of leee than 100 slquelre centimetete, .but i t  did 
give the  f i r s t  c lea r  experimental obeervation of the  scal ing of discharge 
pulse charac te r i s t i cs  with area. Bogus (ref .  2 )  has a l so  reported measure- 
ments of area scaling for  large edmples (3800 cm2); however, h i e  work has been 
confined t o  so la r  arraye. 



A t  Lewis, an e f f o r t  hae begun to  study ~lyeeerdetically the area end geom- 
t r y  degendmx of the charging and discharging perCaidQtere f o r  a vottiaty sf 
epaceeraft m t e r i s l e .  Eacauee of prsvioue experieiaoo wieh eilVerdd-Taf lod 
t h e m 1  control tape, br: w e  choeob ee tho f i t e t  &ater ie l  PO be tdeted id th ie  
i nvee t i~a t io t i .  The large siee of the Lwie  simiiirrtion Eaci l i ty  has ldeda it 
poeeible t o  study Teflon eampl~s  tha t  are more than an order of magnitude 
la raer  then thooo previauely teported. 

Materials 

The eamples consisted of s t r i p e  of 5-centimeter-wid&, BilVeted, f luor i -  
nated Bthylene-prap$lene (PEP) Tef Ion thermal control tape. The tape is a com- 
poaite t h a t  consists of a 0.011-centimetet-thick aheet of fe f lon  with, f i r s t ,  
a layer of vapor-depaaited s i l v e r  and, secorid, a leyet  of vapor-depseited far- 
cone1 600. These layers were followed by a th i rd ,  a 0.03-millimeter-thick 
layer of conductive adhesive. The adhesive t4ae Wo par ts  GE 8 a 2 5  s i l i cone  
robber mixed with one par t  e i l ve r  powder (by weight), The tape was applied t o  
a clean 0.313-centimeter-thick, aqmre  aluminum pla te  i n  s t r l p s  ezktending the 
f u l l  langth of the plate .  The s t f i p e  Were butted ed$e t o  edge. The edgee a d  
the  back af the p la te  were tiot covered. However, no p a t t  of the bare p la te  was 
exposed t o  the  d i r e c t  e lectron beam. The tape w e  dppiied toith f i a e r  preseufe 
end was t e6  ted i n  vacuum t o  have a r e s i e  tance ftm the s i l v e r  layer  t 6  the 
p la te  of approximately 66 ohme f o t  a 1-square-cerrtimeter area. Three senlple 
aaaemblies were prepared - with areae of 232, 1265, sad 505d square centi-  
meters. 

Apparatus 

P'igure 1 ehowe the in t e r io r  of the vactmm tank and the experimental ar- 
rangement. 'the 1265-equate-centimeter sample i e  shot9h i n  place, It i a  fixed 
t o  the eample carriage, a vb r t i ca l  bar t ha t  caa be m e 8  remottiilp u@ eo 1.1 me- 
t e r s  horizontally,  perpendicular t o  the tank axis.  Ta the r i gh t  af the eample 
is a sreinleas-s teel  beem shield.  B&ind the sgdnple and, therefore, not vie i -  
b le  i n  the f igure  is cr 10-equare-centimeter Faraday cup. BdW esd t o  the l e f t  
of the sample is  the am on which a re  fixed the heads of two TREK model 340 1W 
e l ec t ros t a t i c  voltmeters. The spacing bettseen the hoed$ i e  adjustable and they 
a re  swept i n  a ve r t i ca l  arc  acrass the eaFdple surfac8. 2he prdbed were typi- 
ca l ly  spaced 2 millimeters from the empie.  

The sample aseembly was grounded i n  one of two ways. In  the f i r s t  con- 
figuration,  which is referred t o  as the 50-ohm configuraeioa, the elumlnum 
pla te  was insulated from the carriage and the tank structure.  A 50-ohm coaxial 
lead approximately 10 meters long wae brought ftom the sample out through the 
tank wall .  The shield  wee grounded a t  the tank wall. The center cornductor 
paesed through the core of a Peareon model 110 current eranefomer. The lead 
wea then brought t o  a switch tha t  could ground it through a 5Ooohm re s i s to r  or  



ragply i t  t o  the input of an s l e c t r o m o ~ ~ r .  This c o n f i ~ u r a t i a n  l a  ah- in f ig-  
ure 2 as a s a l id  l lha .  f n  tho second configuration, which So referrod to  ae 
tho low-itapedance esnQ~guraeion, tho itleuletor betwoed tha s m p l e  and the ear- 
riagc was replaced by en 0-eentimetar-long aluminurn post threading cke eoro of? 
the Paareoh current t t a n s f o a e r .  This configuratian i n  shown i n  f igure  2 ae 
the daehad LJ.ne. P t  wee coneaived t o  fnfdimize the sample impedance t o  ground- 

The current transformer is ueeful f o r  ~ i g n a l s  with r i e e  timer Greeter than 
50 nanoeeconds. The trensfother output was nonitored with both a Tectronix 
model 7834 storage oscilloscope and a Biomafion model 8100 waveform recorder. 
The waveform recorder was used i n  the pretrigger mode. In  t h i s  mode I.?: ~l to re s  
the output voltage of the Pearson traneformer as o function of time over a ee- 
lected in te rna l  (usually 20 peec). This time in te rva l  includes a selectable  
time in te rva l  before the tr igger.  This capabi l i ty  is  par t icu la r ly  useful fo r  
t ea t s ien t  phenomenon as i t  eliminates the  question about what happened before 
the t r igger  point. The signal was played back slowly through an integrator ,  
and it and i ts  time integral  were recorded on e two-channel s t r ip -char t  re- 
corder. 

The output of the e l ec t ros t a t i c  voltmetersa and t h e i r  time integrals  were 
recorded along with the various electrometer currents, position readouts e t c . ,  1 on a multichannel s t r ip -char t  recorder. The electron f lux (1 t o  2 nA/cm ) was 
generated by two L e w i s  electron guns ( re f .  3). The guns were mounted next t o  
one another, on e i t he r  s ide  of the tank axis,  approximately 10 meters from the 
sample plane. The current d i s t r ibu t ion  i n  th i s  plane was measured by an array 
of current.collectio?. disks. The faux varied U 0  percent over the  largest  sam- 
ple  area. The electron t ra jec tor ies  were minimally affected by the Earth's 
magnetic f i e l d  since the mild steel i n  the outer wall of the vacuum tank re- 
duced the f i e ld  by about a fac tor  of 10. 

A loop antenna feeding a three-level radiofrequency transient-event count- 
e r  was located near the sample and served to  count discharges and s o r t  them by 
amplitude. Also located near the sample and v is ib le  i n  f igure  1 i n  the upper 
r i gh t  corner was e gaseous-nitrogen plasma source tha t  was used t o  neutral ize  
the surface charge on the sample. 

The vacuum tank is a horizontal s t e e l  cylinder 19 meters long and 4.6 me- 
t e r s  i n  diameter pumped by 20 liquid-nitrogen-baffled 91-centimeter-diameter 
o i l  diffusion puahps. It was comfortably operated a t  approximately 2.7x10-* 
~ / l n 2  ( 2 x 1 ~ 6  tor r )  f o r  these t e s t  J and hap a no-load pressure of approximately 
1.3~10'9 ~ / m ~  (lom7 torr) .  

Test Procedure 

In the 50-ohm configuration the samples were exposed sequentially t o  lo-, 
150, and 20-kilovolt beams. The imbedded charge was neutralized with the plas- 
ma source bctween exposures. The sample was i r radiated a t  each voltage f o r  a 
shor t  time (15 t o  60 sec), and the surface voltage prof i les  were measured over 
the e n t i r e  sample area a t  the end of each interval .  A& 10-kilovolt exposure 
the three samples were charged t o  equilibrium (f ig .  3) with the sample ground 



completed through the e l e c t t d e t e r  ( U g .  2). A t  15- atid 20-kilovolt exposutee 
the samples did nut charge ta  eqrrilibriuar but began e d i b i t i n g  breakdowns when 
thc maxiaium surface voltaee was as low as  8.5 ki lovol ts ,  Kith the  ground 
switched front the electrometer t o  the  5 0 - o h  terminaticm, the r e  turn-current 
pulees were recorded u n t i l  a represeiltative group had been asstiiisrbled. AB the 
l a s t  procedure iri  the  a n ,  the e lectron blam wae turned o i f  j u s t  before the 
next predicted breakdowtl and the  surface voltage profi le6 were measured, The 
beam wad then turned beck on u n t i l  the aext  discharBe and then immediately 
turhed off and the eurface redurveged. These data give the  t o t a l  charge oa 
the surface before and a f t e r  a discharge. 

After t h i s  sequence of m8a8urements sdes made f o r  the three samples, they 
were remounted i n  the low-impedance canfigutation,  and t h e i r  discharge behavior 
was remeasured a t  both 15- and 20-kilovolt e lect ron fluxes. 

RESULTS 

Charging 

Figure 3 is  a typical  time h i s to ry  of the charge buildup on a 232-square- 
centimeter sample :.n e IO-kilovolt e lect ron beam. The voltage prof i les  were 
taken with the probes passing' across approximately thamiddle  of the sample. 
The individual s t r i p s  of tape ore revealed by the sharp dips on the surface 
voltage a t  the  seams, where the tape s t r i p s  a re  butted. 

During the i n i t i a l  stages of charging, the d i s t r ibu t idn  of charge bn the 
surface should mirror the actual  f l ux .d i s t r i bu t ion  (assuming, of course, t ha t  
the  surface properties a re  uniform over the s a q l e )  . The obsa-rved var ia t ion  
of the surface voltage with the posi t ion of the 232- and 1265-square-centimeter 
samples is  consistent  with the measured -0 percent var ia t ion of the beam f lux  
over the sample plane. The ia rgcs t  sample (5058 cm2) shows a somewhat wider 
\ 'ariat ion,  the or ig in  o'f which is  undetermined. A l l  three samples a t  equil ib- 
r i u m  exhibi t  a uniform p ro f i l e  except fo r  the gaps and a cha rac t c t i s t i c  f a l l o f f  
a t  the edges. 

The equilibriem voltages a t  the  center were 8.0, 7.2, and 7.6 k i lovol t s  
fo r  the  2320, 1265-, end 5058-square-centimetet sampl&, respectively. The 
voltage prof i les  a t  equilibrium, i n  a l l  three  cases, do hot exhibi t  complete 
bFlateral  synnnetry. A l l  a re  skewed i n  the same way, suggesting a lack of sym- 
metry i n  the experimental arrangement a s  the cause. 

Figure 4 shows the normalized volddge prof i les ,  where the distance x is  
scaled by the half  -width w of the sample and the voltage V by the maximum 
voltage I .  In  these reduced coordinate8 the three emples  are ,  t o  f i r s t  ot- 
der, iden t ica l  i f  the seams a r e  ignored- This obeerved..scal2ng with sample 
width is  inconsistent  with the  model proposed by Parka and Mandell (September 
1976 Monthly P r o g r e ~ s  Report on NASA Coatract NAS3-20119, Systems, Science, and 
Sof mare)  and used by Stevens, e t  a l .  (ref , 4) t o  f i t  t h e i r  cdge-gradient data. 
Their ixodel considers surface and bulk res is tance along with a one-dimensional 
current-balance description (ref .  5) t o  predict  the edge prof i les .  The in- 



a b i l i t y  of the  Parks-Mahdell abode1 t o  predict  eomething as fuadomentol a s  the 
observed scal ing iadicates  tha t  the doddant  physical mechanism tha t  controls 
the edge p t s f i l c  has not been incorporated. Multidicited$ibnal e f f ec t s  a r e  the 
moiirt abviaus possibilities. In  pa t t i cu l a t ,  the spreedine of the beam due t o  
the f i n i t e  width of the sample should be considered. The def iect ioa  of the  in- 
coming par t ic les  w i l l  ce r ta in ly  be grea te r  $or larger  sample$. 

Discharging 

Discharge phenomehon i n  these &amplelr Qere Studied a t  beam voltages of: 15 
and 20 ki lovol ts .  Dibckarging seemed t o  begin when the m a x i m  sample voltage 
was as  law as 8.5 kilovoit8. These ear ly  discharges were charactei-ized by 
t h e i r  small s i z e  r e l a t i ve  t o ' t h e  mre typicel  breakdowns. Pigtire 5 is a time 
h i s to ry  df the breakdown behavior of the 232-square-centimeter sample, ~ lh i ch  is 
typical .  The voltage prof i les  were taken acros approximetely the center of 
the sample and transverse t o  the tape direct ion.  

The seams a re  apparetlt i n  f igure  5(8) as two $mall dips. The probe sweeps 
over a 4-kilovolt  ca l ib ra t ion  bar a t  the end of i t e  t ravel .  Figure 5(a) shows 
the p ro f i l e  a f t e r  215 secohds of charging with a 13-kilovolt e lect ron beam. 
Figure 5(b! shows the same prof i le  j u s t  a f t e r  the f i r s t  b r e a k d m  and 270 see- 
onds a f t e r  the s t a r t  of charging. The breakdowh is e l i dea t  as a charge- 
depleted region around the l e f t  tape seam. The exterlt of t h i s  charge-depleted 
region along the seam d i rec t ion  i s  shown i n  f igure  6. The only two sweeps t ha t  
show depletion are figUtes 6(c) and (d), demonetrating t ha t  the lefigth of the 
depleted region i g  no more than 768 centimeters long and is  away from the ends 
of the sample. Figure 5(c) shms  the p ro f i l e  a f t e r  fur ther  charging; no break- 
downs were observed on the a rc  counter: o r  the  current monitors. The overal l  
voltage level  is  higher than i n  f igure  5(b) and the charge-depleted region is  
f i l l i n g  in .  Figure S(d) show the ? t o f i l e  taken a f t e r  370 seconds of charging 
and immediately a f t e r  the second observed breakdown. This p rof i le ,  when corn- 
pared with f igure  5(c), indicates t ha t  both seams broke down. Figute 5(e) 
shows the same prof i le  a f t e r  600 seconds of charging and before the next break- 
down which occurred a t  665 seconds. t h e  resul t6  of t ha t  breakdown are  shown i n  
f igure 5 ( f ) .  Before t h i s  breakdown, the  maximum durface voltage increased over 
tha t  i n  figures S(c) and (d) and almost t o t a l  charge cleanoff. resulted.  Almost 
t d t a i  charge cleanoff is typical  of the behavtar of t h i s  s i z e  sample fo r  most 
of the subsequent b r eakdms .  

Quali tat ively,  the preceding sequence of events i e  atlalogous t o  the be- 
havior seen commanly on high-voltage insu la tors  when they a r e  i n i t i a l l y  brought 
up t o  t h e i r  working voltage. In  t h i s  case, gaps t h a t  before breakdown have the 
la rges t  voltage gradients (e lec t r ic  f i e ld s )  break down i n i t i s l l y  at; low vol t -  
ages and, by depleting the  charge near them, reduce the local ly  high e l e c t r i c  
f i e ld .  The regions away from the gaps Cad then charge t o  even higher voltage 
u n t i l  the next most sens i t ive  high-electric-field-region breaks down. This 
allows the sample voltage t o  go even higher. This process continues u n t i l  
there are  many s i t e s  s imilar ly  sens i t ive  and quasi- repet i t ive  behavior s e t s  i n .  

Fir'ure 7 ehows three examples of the more typical  return-current pulses I 
resu l t ing  from the discharge of the 232-square-*centimeter eample. Figures 7(0) 



and (b)show da ta  taken with the  SO-ohmgrounding configurat ion a t l S a n d 2 0 k i l o -  
v o l t s ,  respectively.  Figure 7(c) shows a typ ica l  pulse with the  l-iriipedance 
grounding configurat ion.  T h e v e r t i c a l  gain is a f a c t a r  o f 2 s m a l l e t  than i n  fig- 
ures 9 (a) and (b) . A mast d i s t i n c t i v e  c h a r a c t e r i s t i c  of t h i s  sample when t e s t ed  i n  
the  low-impedance conf5guration is the  appearance of a p o s i t i v e  precursor. That 
is, the re  is an i n i t i a l  dowm~ard s p i k e  t h a t  represents  a pos i t ive  current  leav- 
ing the  sample. Here, and i n  a l l  t he  return-current-pulse da ta  shown, a s i g n a l  
g rea te r  than zero represents  a curretit  of negative charge leaving the  su r face  
( r e .  6). Only t h i s  sample, i n  t h i s  configurat ion,  exhibi ted  a p o s i t i v e  pre- 
curser  and i t  always did. However, the  n e t  charge leaving the  surface  was a l -  
ways negative,  a s  i n  the  o the r  s;unples. This p o s i t i v e  precurser  may be re l a t ed  
t o  t h e  p o s i t i v e  charge b u r s t s  reported by Yadlowsky ( ref .  7). He observed both 
pos i t ive  and negative charge b u r s t s  with d i f f e r e n t  t i m e  evolut ions  in break- 
downs i n  bulk Teflon. T h i s  would suggest  t h a t  such cur reh t s  of both p o s i t i v e  
and negative p a r t i c l e s  a r e  cont r ibut ing  t o  give the  r e s u l t  reported here. 

Figure 8 shows some typ ica l  re turn-current  pulses from the  1265-square- 
centimeter sample. They have been chosen t o  demonstrate the  range of s i z e s  and 
shapes abserved. The nonrepeatabi l i ty  of the  shape, the  wide v a r i e t y  of s i z e s ,  
and the  genera l  lumpy q u a l i t y  of the  pulses suggests  t h a t  they a r e  composite$ 
of matry small breakdowns. The low-impedance pulses ( f igs .  8(c),  (d), and (e)) ,  
though s i m i l a r  i n  o v e r a l l  shape, have higher frequency noise  components than 
the  50-ohm pulses. Figure 9 shows some pulses from the  5058-square-centimeter 
sample. The same comments concerning the  v a r i a b i l i t y  of s i z e  and shape t h a t  
were made about the  1265-square-centimeter samplc a r c  appropriate here.  

For the  purpose of d iscuss ing a rea  e f f e c t s  the  i n i i v i d u a l  re turn-current  
pulszs a r e  described by three  parameters : the  maximum cur ren t  I, the  t o t a l  
charge Q, and the time At, where ,It is  defined as the width of the  pulse 
a t  1/2. Except Cor the  f i r s t  few discharges t h a t  were described e a r l i e r ,  
there  was no evident  systematic dependence of these parameters on the discharge 
h i s to ry .  A d i s t r i b u t i o n  function f o r  these parameters was constructed by 
choosing a narrow i n t e r v a l  of the va r i ab le  and p l o t t i n g  the  f r a c t i o n a l  number 
of events occurring i n  thc  i n t c r v a l .  A smooth curve was then d r a m  through the  
point .  

Figure 10 is  an example of such a d i s  t r i b u t i o n  Function f o r  the  peak value 
I of the re turn-current  pulses observed with the 1265-square-centimeter sample 
a t  20 k i l o v o l t s  with the  Low-impedance grounding configurat ion.  The horizontal  
bar  ind ica tes  the  cu r ren t  i n t e r v a l .  

These d i s t r i b u t i o n s  were characterized by th ree  parameters: the  l a r g e s t  
voluc of the  parameter observed, denoted by the  subsc r ip t  M; the  value of the  
parameter a t  the  peak of the d i s t r i b u t i o n  function,  which can be thought of a s  
the  most probable value,  denoted by the  subsc r ip t  MF; and, f i n a l l y ,  the  width 
A of the  d i s t r i b u t i o n  function a t  112 the  Mg value.  Table f contains the 
rcduced da ta  arranged by area ,  beam voltage,  and grouhding configurat ion.  The 
l a s t  two columns g!ve the t o t a l  numbvr NT of discllerge pulses recorded and 
analyzed f o r  both grounding conf igura t ions .  The small nunibcr of pulaee s tudied  
i n  the low-impedattce, 15-kilovolt ,  232-square-centimeter case r e su l t ed  from a 
rcluctonce of the samplc to break down under these  condit ions.  



Figure 11 shars the data f b t  the a w i m d m  current k observed as a fune- 
t ion Of area for  the two grounding configurations and beam voltages. It was 
expected tha t  the  area dependkace of t h i s  current wouid be of i n t e t e s t  beceuse 
i t  i d  a *otst-cede petmbter .  Where it seemed apprbpriate, a ledst-squares f i t  
was drawn through ttie three points. The 20-kilovolt, 50-ohm ddta f i t  an 1~ = 
14.3 ( ~ ) 0 * 2 5  l iae ,  where A denotes erea. The low-impedance dara a t  e i t he r  
beam voltage does not lend i t s e l f  t o  a eringle-teriil power-law deectiption, aad 
s t r a igh t  lines are used t a  connect the poiitts. The area s t a l h g  exhibited by 
the 26-kilovolt, 50-ohm data fs "eaker than the ( ~ ) 4 * 5 ~ 5  teported by lalmein 
(ref.  1) for  smaller samples. It is d i f f i c u l t ,  howev&r, t o  compare h i s  work 
d i r ec t ly  with t ha t  repotted here  since hi8 gtounding was d i f fe ren t ,  h i e  e t s t i s -  
tieal treatment of the data was not the  same, and h i s  current density wars three 
order6 of magnitude larger.  However, h i s  data do exttapolate i n  close agree- 
ment with the low-impedance, 20-kilovolt, 232-square-centirdeter point. 

Two qua l i ta t ive  observations ehould be made about the makimrllp-current data 
i n  figure 11. F i r s t ,  i n  agreement with A. Kcratin of TkV (private canmiunicetion), 
the grounding codfiguration had a s ign i f ican t  e f f ec t  on the behavior. For ell- 
ample, a t  20 kilovolts s iga i f ican t iy  larger  currents Uete observed with the 
low-impedaace ground than with the 50-ohm ground. However, 15 ki lovol ts  the 
opposite is t rue.  Second, both the SO-ohm and low-impedance aaca exhibi t  a 
weakelt area dependence with a 15-kilovolt beam thah with a 20-kilovolt beam. 

Fiecrc LS shows the m e t  probable pcak current Im as a function of 
$ankple area i n  the s a w  f o a t  a$ id  the previous figure.  The same stroag de- 
pendence of the behavior of t h i s  parametef a t  15 ki lovol ts  on the nature of the 
grmnding is observed. A t  20 kilovolts the area dtipendence of Im is c lear ly  
mch weaker than tha t  exhibited by I .  I n  fac t ,  it w u l d  seem tha t  t o  a f i r s t  
apprdximation, Im is independent of the atea.  

Figure 13 shows the maximum charge Q09 i n  the same format as, i in the two 
previous figures . A t  20 ki lovol ts  both gtounding configutatioas show gobd 
least-squares f i t s  t o  & K ( A ) O * ~ ~ ,  where K i s  a constant. The low- 
impedance configuretioh gave a somewhat larger  value of K (0.38) tharl the 
56-ohm configuration (0 .N). Thu 15-kilcvolt,  50-ohm data (fig.  13 (b)) ate f i t  
(rather poorly) by % = 0.75 ( A ) O - ~ ~ ,  which i s  weaker Uldn the 20-kilovolt 
scaling.  But, given the qual i ty  of the f i t ,  no conclusion can be drawn cod- 
cerndng the beam-voltage dependence of the exponent. 

Figure 14 shows the most probable charge as a functior! of area. A t  
20 kilovolts the de~end-nce of t h i s  parameter en area is s ign i f ican t ly  weakzr 
than tha t  of QM, but a t  15 kilovolts its behavior is  eimilar t o  t ha t  of i ts  
QM counterpart. Both the 41 and % data show the same eens i t i v i ty  t o  the 
grounding configuration as  does I i n  that ,  a t  20 ki lovol ts ,  a low-impedance 
ground increaees the charge over the 50-ohm value but a t  15 ki lovol ts  it de- 
creases it. 

Figure k 5  shows the maximum discharge time h t ~  as a function of erea. 
A l l  four s e t s  of data f i t  AtM = K(A)x very well. The values of K and x 
for  the four cases a re  given on the f igure.  The 50-ohm data for  both voltages 



show tha t  At* scales approximately as the f i r s t  power of the area, but. the 
law-impedance data exhibi t  s ign i f ican t ly  weaker scaling.  

Figure 16 shows the data f o t  the most probable dischsrgd time A k .    he 
20-kilovolt data i n  both grounding configutatians f i t  Atw = !;(AIX i n  a con- 
vincing way, but with values of x bignif icant ly  dmaller than i n  the At# 
cases. It appears tha t  At~ol ,  scales  apptoximately as the square toot  af the 
area. This dependence suggests tha t  a e ~ a r a c t c t i s t i c  l inear  dimension may con- 
t r o l  the b r e a k d m  behavior. I f  it is assumed tha t  rile host  probably breakdown 
s t s r t d  somewhere i n  a seam, propagates along it a t  constant velocity,  and is  
liniited by the length of a s ingle  seem, the coeff ic ient  K can be interpreted 
ad 1/2fv, where v is  the propagation velocity.  The factor 2 is  approxi- 
mate and i s  inserted because the mbcrt probable pulse would s t a r t  somewhere near 
the middle and propagate i n  both directione,  f is  a correction tha t  would con- 
v e r t  At t o  the t o t a l  time the puldle propagates down the gap. A model of the 
discharge ptocess tha t  could predict  the return-current-pulse shape is  required 
t o  accurately evaluate f .  Such a rdadel does not  ex i s t ,  but f is  assumed t o  
be near 2. Mithin the l imi t  of t h i s  crude description,  the propagation veloc-. 
i t y  v is approximately 1 . ~ 1 0 7  em/eec for  the 50-ohm data.  

~ i w h a r g e  Phenomenology 

A consideration of the badic physics 6f the discharge process i n  the 
geometry being e tudied here ilinnediately c a l l s  t o  question the meaning of the 
pulse-current measurementd described i n  t h i s  paper. Figure 17 schemt ica l ly  
describes the experimenZa1 s i tuat ion.  In  the figure,  Qbefore and Qafter 
a re  the ne t  charge i n  the surfeke of the sample jus t  before and ju s t  a f t e r  the 
breakdown, respectively; Qpulse is  tha t  par t  of the charge tha t  goes t o  the 
baseplate i n  such a way as t o  go through the meter; aird Qehott i d  tha t  par t  
of the charge tha t  goes t o  the baseplate without going through the nleter. Wo 
contributions t o  (?short a r e  shown. The lower one corresponds t o  charge going 
around the edge of the sample and the upper one, which may be the la rges t  p a r t ,  
corresponds t o  charge going down the seam t o  the baseplate. 

$here is  no m y ,  given the preeeat limited undetstanrling of the breakdown 
process, t o  predict  the relaLive sized of Q Uk and Qq ,; o r t '  'their t a t i o  
should be governed by the d e t a i l s  of the explr  en ta l  geometry, materials,  a tc .  
Further, there is reason t o  expect tha t  t h e i t  charac te r i s t ic  time evolutions 
(At, e.g.) would be d i f fe ren t  since the charac te r i s t ic  impedance of the two 
paths is not Likely to  be the same. Since Qehort would ptobably have the 
lower impedance path, i ts  ~t may be s ign i f ican t ly  smaller than the A t  cor- 
responding t o  Q euLse . I n  t h i s  experimental arrangement there is no way t o  
determine d i r e c t  y the currefit-titilei signature cotteaponding t o  Qshatt, but 
i ts  magnitude was detemined by applying the charge conservation equatiod 
shown i n  figure 17. Any conclusions drawn from these data must be considered 
to  be ten ta t ive  since only one pulse for  each area and beam voltage was con- 
sidered and only the 50-ohm grounding c o ~ ~ f i g ~ ~ z a t i o n  was used. 

The t o t a l  charge on the surface before the pulse Qbgforc and the charge 
a f t e r  the  pulse Qafter were determined by integrat ing the surface voltage 



prof i les  over the sam$le ar8a and f tom the ~ O W R  r a t i c  of capacitance t o  area 
( 0  17 F ) .  The ~cMpl6 was trereed as  a p a t ~ l l e l - @ l a t e  edpacltance with the 
surface of the Teflon a@ an4 pla te  and the s i l v e r  the other,  

Figure 18 sudlnrrises the data fo r  the three Ulatges - Qaftei8 9c4,re8 and 
~ ~ t , ~ ~ ~  - as a function of area fo r  the two beam voltage&. The c ' a rges  e r e  ex- 
preseed as  & fraeti im of Qbefcrre. The data in  f igure  l 8  (a) d m h s  trace tha t  
elmos t complete chatge cleanof f occurs fbr  the 232-square-centimter sample, 
but the larger  s t a h p h  show tha t  thew is 9 tendexicy t o  88tUtation a t  a 
Qa f t e r b e f  ore  of about 0 .3 .  The f h c t i o f i  i n  the observed pulse Q ~ ~ ~ ~ ~ /  
Qbeforie seem t o  drop fraoh abbut 0.4 f o r  the s w l l e e t  area t o  about 0.3 a t  the  
la rges t  area. The fract ion i n  the unobserved pulse Q ~ ~ ~ ~ ~ / ~ ~ ~ ~ ~ ~  $ t a r t s  a t  
about 0.5 and drops t o  0.3 o r  0.4 8 t  the l a rges t  area. Most itbportaatlp, it i s  
ce t ta in ly  of the stme order 6s ~ ~ ~ ~ ~ / 9 b ~ ~ ~ ~ ~  a t  a l l  areas studied. This 
tesu l  t c lear ly  demons tre tea t ha t  the experlmentai che tac te r i ia t ioa  c 'ischarge 
behavior in-ground t e s t s  such as a r e  desctibed i n  t h i s  paper m a t  be , h e  i n  a 
menner t h a t  considers thr? c o n t r i b u t h  of Qshart i f  r e su l t s  ubleful, f o r  ex- 
t rapolat ion t o  spacecraft behavior ate t o  be obtaimd. 

The charging and discherging charsc te r i s t ics  of Large-area semplee of sil- 
vered Teflbn tepe presented herein demanstrdte cbmplex behavior. These re- 
s u l t s  a re  preliminary. There i e  much ~ o r k  to be d m e  and many avenues t o  ex- 
$lore before an -unambiguous picturi! cart emerge. Even a t  thio s tage of the in- 
vestigation,  however, some d e f i a i t e  conclusiorre can be dram.  

The LO-kilovolt chargirsg data demonerrate t ha t  the edge-vol tage prof i les  
sca le  with the width o f '  the sample. T h i ~  implies t ha t  the, exis t ing one- 
dimensional model, *ich invokes bulk sad eurfacit currents,  is incomplete atld 
tha t  multidimeneionai e f f ec t s  such as beam sprbading mst be included i n  any 
r e a l i s t i c  model of insulator  charging. 

The discharge pulse data demonstrate tha t  the grounding configwetion is  
of r e a l  significance. It modifies both the magnitudes of the discharge param- 
eters and i n  adost cases t h e i r  apparent scaling Cith area. f i e  seme statemeat 
can be made about the e f f ec t  of bdam voltage. This rs a c lear  warning tha t  
tests with d ie  t t ibuted fluxes and spacecraf t - l i ke  conf iguxations may be manda- 
tory for  a r e a l i s t i c  simulation of spacecraft materials discharging behavior, 

The f i t s t  few diecharges always take place a t  seams,. i h  the high-voltage 
region 04 the saniple. MaiJ~ht ,  the ro l e  of seam itl typicdl breakdoatris is not 
ca ig le te ly  d e a r .  (This study does not  dietingui& c lear ly  between sceani-length 
e f f ec t s  and area a f f ec t s  since,  fo r  these earhples, the seam length scales  t o  a 
f i r s t  approximation d i rec t ly  a s  the area.)  his ambiguity can and should be 
resolved by measurements with so l id  h e u i a t o r  films. 

The charge-bnlance r e su l t s  demonstrate t ha t  measuring only the aeturm- 
current-pulse cheraeter is t ics  doee not edequatrly define the behavior of these 



materials  f o r  spacecraft  applications.  Cocaideration must be given t o  the  nbg- 
nitude and time evoh t ion  of q8hOrtd T h  tinle evolution of Qshort may nbt 
be re la ted  i n  any simple way t o  the obscwed time evolutidn of the  raturn- 
current pulse. 

Although the  -ximum ow!:  burrents contintie t o  itactease with area 
I - A the oh-=.ration tha t  the wet-probable eeak currents seem t o  ks 
nearly i ndqmden t  of a rea  suggedtsr tha t  there may be some l imit ing Banrple area 
tha t  contributes t o  a pulse. Very large a teas  may a l so  exhibi t  peak currente 
tha t  appear a rea  independent s ince t he  highest current pulee m y  continue t o  .- 
scale,  but the  prbbabil i ty of a high pulse being o b r l e ~ e d  aiay decreaee. 

The discharge propagation velaci ty  of 1 .5~107  cm/sec extracted fram the6e 
data could provide a clue t o  t he  nature of the dominant physical phenorm!non 
cont tol l ing the discharge process. 
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Figure 1. - Vacuum-tank interior and expeiimental arrangemqnt. 

1 1-1 
EVENT COUNTER 

VACUUM 
TANK 

TO MULTICHANNEL 
RECORDER 

OWFR 

GUN-2 

figure 7. - Arrd-rlfecl\ test fd(1111v. 



'Lf"lm 0 e) E w s u r e  time. PI- (dl Exposure time, 

180 seconds. 350 seconds. 

Figure 3. - Voltage profiles for 230-square- 
centimeter sample and 10-kilovolt beam. 
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Figure 5. - Center sweeps for :I?-square-cenlimeter sample and 15kilovolt beam. 







tb) 50-Ohm grounding configuration; 20-kilovolt beam. 

~ c l  Low-impedance grounding co~figuration; ?O-kilovolt 
beam. 

Figure 9. - Return-current pulses for 50%-square- 
centimeter sample. 



CURRENT. I. A 

Flguie 10. - Current distribution 
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beam. 
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