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Metal plates par t ia l ly  covered by 0.01-centiiueter-thick fluorinated 
ethylene-propylene (FEP) Teflon were charged i n  the Lewis Research Center's 
geomagnetic substomi simulation f a c i l i t y  using 5- , 80, lo-, and. 12-kf l b v d t  
electron beams. Surface,voltage ae a function of time was measured for  vari-  
ous i n i t i a l  conditians (Teflon discharged o t  precharged) with the metal plate  
grounded or  floating. kesults indicate the t  both the chclrgihg t a t e s  and the 
levels t b  which the samples become charged a t e  influenced by the g e m t r y  arid 
i n i t i a l  charge s t a t e  of the insulating surfaces. 

m e  exper-nts a re  described and the resu l t s  a re  presented and discudsed, 
NASA charging analyter progtam (NABCAP) models of the experiteats have been 
generated, and the predictions obtaified are  described. Implications of the 
study resu l t s  for  spacecraft are  discussed. 

INTRODUCTION 

Anomalous behavior of geoeynchronous spacecraft has been at t r ibuted t o  the 
arc  discharging of dif  fe rent ia i ly  charged ~pacecraf  t surf aces (ref.  1). In ex- 
amixiing the response of a spacecraft t a  the chargixig e n v i r b ~ n t ,  it is of in- 
t e re s t  ta identify both the patentiale t o  which Qariotrs spacecraft surface8 
chdrge and thC? t a t e s  a t  which th&w potentials vatjr i n  response t o  environmen- 
t a l  changes. of part iculet  in te res t  are  the magnitudes and rates  of change of 
the potential  d i f  berences between various spacecref t surf aces. 

It has been reported that  the potentials (with respect t o  space plasma 
potential)  of the ATS-5 and ATS-6 spacecraft etructrtres kaxi change rapidly by 
kilovolts i n  reeponse t o  changes i n  the plasmd e n v i r a m n t ,  eritry into and e x i t  
fzom eclipse, o t  the turning on or off of gar f ic le  emitter6 (refs.  2 end 3). 
This is not eurprieing since the capacitance of tireee spacecraft with r e ~ p e c t  
t o  the rSnviroament is small. Tlae questidn of in t e res t  here is the e f fec t  of 
such changes on potentf a1 dif  f erensee between spacecref t etrucfuree end insu- 
la t ing surface materials. Ground studies have sham tha t  imiulating films 
mounted on grounded substrates end eubjeeted t o  bczdmrdmeut by monoenergetic 
electron beams with current densi t ies  typical of the geosyndironous subetow 
environment reqdire several minutes to reach equilibrium (refs. 4 end 5). Cal- 
culations with one-dimensional models indicate tha t  even longer times may be 



required t o  develop. equilibrium d i f f e r e n t i a l  charges i n  the actual  space envi- 
ronment ( ref .  5). 

The study desctibed i n  t h i s  p e e r  was undertaken t o  i aves t iga te  charging 
ra tes  and f i n a l  potent ia ls  of insulet ing surf  aces and uaderlytng metal portions 
of cotnpoaite metal-dielectric a t tuctures .  It is  an extension of work previous- ... 
l y  reported (ref. 5). Ideas touched oh i n  the e a r l i e r  study are  refined ahd 

,9 
revised on the basis  of the  datd preeented here. Thie paper describes the com- 
posi te  samples, the e q e r i m a t e ,  end t h e i t  resu l t s .  predictions of the NASCAP 
code (ref.  6) fo r  satbe of the experiments a re  preseclted and compared with the 
data.  Implications of the r e su l t s  f a r  spacecraft  are  discuseed. 

The experimehts Wme performed i n  the Lewis Reaearch Center's geomagnetic 
substonn simulation f a c i l i t y  (ref. 7).  Samples were bombarded with beams of 
5-, 8-, lo-, and 12-kilovolt e lect rons  a t  a current density of 1 n.A/cm2. ALL 
t e s t s  wete performed i n  the dark. 

Samples Tee ted 

Samples consisted of metal p la tes  of aluminum al loy p a r t i a l l y  covered by 
s t r i p s  of 0.01-centimeter-thiek s i lvered FEP Teflon tape i n  several  configura- 
t ions .  The tape was applied ta the pla tes ,  g i lver  s i de  down, with conductive 
adhesive. The pla tes  @ere mounted on 6.3-centimeter-long ceramic posts t o  pro- 
vide e l e c t r i c a l  i sola t idn.  Coaxial cable leade from the p la tes  were brought 
outside the tank so tha t  the pnatea could be groutrded t o  the tank s t ruc ture  or 
allowed t o  f l oa t  e l ec t r i ca1 . l~ .  

Tests were perfowed on samples with four d i f f e r en t  pat terns  of Teflon 
tape, shown i n  f igure  1. A l l  the pla tes  were 15.2 centimeters by 20.6 centi-  
meters and the Teflcm tape was 5 centimeters wide. In the figure,  crosshatched 
areas (labeled M) represent ewosed mete1 and pla in  areas (labeled T) represent 
Teflon. The Teflon area is  one-third the t o t a l  f o r  configuration 1, two-thirds 
the  t o t a l  fo r  configurations 2 and 3,  and the e n t i r e  surface area for  configu- 
r i i i o n  4. 

Tee t Sequences 

Twa se r i e s  of t e a t s  were run: The f i r s t  ueed one sample 6f configura- 
t ion 1. and one of configuration 2, and the second used one eample each of con- 
f igurations 2, 3, and 4 .  Test sequences and quant i t i es  measured were the same 
fo r  both s e r i e s  of tests, but diagnoetic capabi l i t i es  were increased fo r  the 
second se r ies .  

In  the f i r s t  s e r i e s  of tests, surface voltage data were taken with a fREK 
Model 340 and a surface voltage probe t ha t  was mounted on a r ad i a l  arm end 



swept across the samples a t  a distance of 2 t o  3 millimeters from the surface, , The probe was pdeitioaed t o  pass acoose the cerlter of the s m p l e  (deries 1 
probe track i n  f ig .  I ) .  The probe cauld a l so  be stopped a t  ariy point i n  i t s  
soeep. Time h is tor ies  of sample chergirrg *ere taken both with the probe sweep- 
ing back and for th  actoss the eample eurfaCe a d  with the probe stbppdd over 
the exposed metal plates.  The etopped poeitione were chosen ao tha t  the 
probe's 0.95-centimeter-diemetet head did not slhield the Te f lm  from fhe beam. 

I n  the aecand ser ies ,  two TREK Model 340 &V surface voltage probes were 
mounted on the same swingiag arm, again 2 t o  3 millimeters from the surf ace. 
These probes were positioned eo tha t  the  upget p%60e passed across the ve r t i ca l  
centerl ine 4.8 centimeters above the eemple center end the lotrer probe passed 
across the v e r t i c a l  center l ine  6.6 cerntimeters below the sample centor (se- 

( r i e s  2 probe tracks i n  f ig .  1). Stopping the double-probe system over the ex- 
posed metal p la te  shielded dome of the Teflon from the beam. Therefore, high- 
voltage leads from the plates  were brought outside the tank, and a th i rd  ptobe 
arrangement was s e t  up t o  monitor the p l a t e  voltages during charging. 'this 
probe monitored the p l a t e  voltages during charging both with the double probes 
sweeping and with them stopped w e l l  away from ehe sample. 

A l l  voltage data were recorded on a multichannel etrip-chart  recorder. 
The ptobe-arm sweep r a t e  was s e t  eo tha t  the probes crossed the sample i n  about 
7 seconds. Data read from the s t r i p  cha t t  were accurate t o  about f5  percent, 
with a minimum er ror  i n  resolution of about k100 vol ts .  The configuration 2 
sample was tested i n  both test aer ies  so tha t  e f fec t s  due t o  differences i n  in- 
s trumenkation could be identified.  

The t e s t  sequeliee for  each .sample a t  each beam voltage was begun with the 
sample surface a t  zero potent ia l  (measured by the probed). The sequeace con- 
sis ted of the following steps : 

(1) With the metal p la te  e l ec t r i ca l ly  floating,  the  sample was exposed to  
the beam and allowed t o  charge tu  equilibrium. 

(2) With the beam s t i l l  on, the metal p la te  was thed grounded externally 
aad the Teflon was allowed to  charge u n t i l  i ts  eurface potent ia l  reached equi- 
librium. 

(3) Then the metal p l a t e  was e lecer ica l iy  floated arid the system a l lmed  
t o  charge u n t i l  e q u i l i b r i u w a e  again reached. 

This sequence was repeated e t  l e a s t  twice w i t t i  each l~ample i n  each series s o  
tha t  data ceruld be taken with the probes $weeping and vLth the probes stopped. 
In addition, some tests were run i n  which fu l ly  charged f loat ing samples were 
shielded from the beam during the groundiug of the  plates .  

During the tes t ing,  par t icu ia t ly  during the th i rd  dtep of the sequence, 
some ef fec t s  were observed tha t  wete traced t o  noaunifofmities i n  the electron 
beam or  t o  iriteractions of the probes with the eemplee. To the extent possi- 
ble ,  such instrumentation-related e f fec t s  hdve been eliminated from the date 
reported. 



I n  t h i s  section, t e s t  rb8ul . t~ are  deecribed &ad i l l u s t r a t ed  with the 5- 
and 8-kilovalt  beam date. F i rs t ,  important gener&i features of the samples1 
respanses during the t e a t  sequence are  iaent i t ied  i n  the 5-kilovolt data. Then 
sample respUnBee to each dtep of the tebe stkpence a te  considered i n  mare de- 
t a i l  and i l l ue t t a t ed  with the 8-kilovolt data. Except as rioted, respmsee t o  
che 10- and 12-kilovolt beam were qual i ta t iveiy the as thaee a t  lower 
beam vol tag;es. beta points f of: Tsf lon represent prabd r e a d i a a  st the centets 
of the Teflan s t f ip s .  Where data from two probes were ~lvailabie,  readinge were 
averaged; error  bars a re  used to  indicated aca t te r  i n  the data where apprbpri- 
ate.  

The charging responsee of the f a r  test samples during the test cequeiace 
with the 5-kilbuolt be& a re  eh- i n  figure 2. t o  presoat the charging his- 
tor ies  ot?. the seme time scale  fo r  captarison, the l*groudd piate" and "float 
plate" points have been plotted a t  240 and 540 seconds, respectively. However, 
since the samples were a l l  very aearly i n  equilibtitiin i h  these time fremen, the 
i l l u s t r a t i v e  value of ee t t ing  the time scales equal was f e l t  t o  be more impor- 
tant than preserving the i r  de ta i l s  here. 

rhe f igute  indicates eeveral notihrorthy general features of the s W l e s t  
respoases. F i r s t ,  i n  every instance i n  which rapid changes df potential  oc- 1 
cutred, the potedtial  of the plate and that  of the  eelo on surface changed a t  '7 
nearly the same rate.  That is, although absolute charging (chaaes i n  poten- I 

t i a l  02 the whole $ample) cdn aecur t8pidlyS d i f f e ren t i a l  charging (changebi of i t 

the re la t ive  potentiale of the Teflon surface end the underlying plate) take$ -1 

place more slowly. This i s  i n  agreement u i th  the concept tha t  the r a t e  of dif-  
f e ren t i a l  charging i s  controlled by the tapacitance between the ~ e f l o n  surface 
and the plate,  whereas the r a t e  of absolute chetging depends on the much small- 
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e r  capacitance between the semple as a h o l e  and its surroundings. Thus, when I 
the samples wete dxpoaed to  the beam a t  the beginning of the aequedce, the 7 
Teflon surfaces and the plates chadged poteat ia l  a t  the sabne r a t e  fo r  about the i 
f i a t  15 seconds. Then d i f fe rent ia l  potentials began t o  develop. When the 
plates Qere groimded (at  240 ~ e c  i n  f ig .  21, the d i f fe rent ia l  potentials be- 

1 
tween the Tefhn  surfaces and the plates were maintained. The Teflun surface 1 
subsequently charged back to  i ts  tsquilibriurn potential  a t  a rete controlled by 

- -  - -* 
its capacitance t o  the plate. Again, &en the piatee wbre floated w i t h  the 
Teflon surf ace6 precharged ( a t  546 sec, i n  f ig .  21, the i n i t i d l  change i u  p la te  
potential  web reflected i n  an equal change i n  the Teflan surfece gbdtential. frr 
this case tbe Teflon surface became more negative than f t s  equilibrium poten- 
t i a l  (overahst) end began t o  discharge to  reestablish i ts equilibrium with the 
beam. 

The second general point evtdent f tmi  figure 2 is tha t  the piates cherged 
more slowly with the Teflon precharged than w i t h  it i n i t i a l l y  uncharged. The 
charging r e t e  of the plates  w i t h  the Teflon precharg. ,d was affected by the 
re la t ive  areas of Teflon and metel exposed t o  the beam end, t o  a lesatk degree, 
by the atrangement of the Teflon s t r ip s .  Thus, the configuration 1 sample 

I 
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pia te  charged most rapidly and the configuration 4 sadlple pla te  most slowly i n  
the th i rd  Btep of the t b s t  sequence. 

F i a s l l r l  the Teflon lurfaces i n  these t e s t s  always took oh sore negative 
potexitfa1 than did the plates.  t h i s  i e  consistent with observations of the 
charging of Teflch eutfeces and bare c a t e l  pla tes  ( refs .  5 and 8). It means 
tha t  the polar i ty  sf d i f f e ren t i a l  charging studied is one i n  which the itisula- 
t i on  has a more negative equilibrium p6tent ia l  than does the metal "s tructure." 

I n  the fbllowing sections,  e a q l e  responses t o  the three s teps  of the t e s t  
sequebce are considered individually; the  8-kilovolt  beam data a t e  used to  il- 
lus trate the behavior. 

2 
( 

Step 1 

I n  t h i s  step,  the samples were charged from en "a l l  zeroit i n i t i a l  coadi- 
t ion.  The Teflon surfaces and the f6ur sample plates  responded as shown i n  
figures 3(a) ahd (b), respectively. Duting the i n i t i a l  15 secorlds of charging, 
the p la tes  and the Teflon Burfaces of each configuration charged a t  aear ly  the 
same ra te .  FuttXiennore, a l l  four configurations charged a t  the same ra te .  
This is nor: surprising since the capacitances of the samples t o  t he i r  surround- 
ings were nearly equal (meaeured t o  be 200*30 pF); the r a t e  of absolute chatg- 
ing is  dominated by t h i s  capacity. 

The time h i s to r i e s  of charging f a r  the Teflon surfaces of the £out con- 
figurations a r e  very blimilar (fig.  3(a)). A l l  e re  monotonic. The equilibrium 
potent ia ls  of the surface% were a l l  about -6 ki lovol ts ,  consistent with other 
measuraaetite of Tefldn samples (refs.  4 a d  5).  

Differences aniong the four corifigurationsare shown by time h i s to r i e s  of 
p la te  chargiag (fig.  3@)). The data indicate tha t ,  a f t e r  20 t o  40 seconds of 
charging, the configuration 1 ple te  was the  lea$ t  negative, the canfigutation 4 
p l a t e  was the rdost negative, and thc configuration 2 and 3 plates  were a t  the 
eame (intermediate) potent ia l .  The configuration 4 p la te  remained the most 
negative and, a t  equilibrium, had a potent ia l  only s l i gh t ly  lesB negative than 
the overlying Teflon eurf ace and more negcr t We than equilibrium potent ia ls  re- 
ported for  bare plates  (ref. 8). Although the charging of the configuration 1, 
2,  and 4 plates  appeared monatanic, the configuration 3 p l a t e  reached a maxhum 
negative potent ia l  a t  20 ~6 48 seconds. It then decayed by about 560 vo l t s  t o  
equilibrium. 

These respondee can be understood qua l i ta t ive ly  by cons ideriag the cur- 
reats to  each sample as  e whole and t o  i t s  individual Components (Teflon eur- 
faces and metal) iddj-vkduaily and the "capecitors" being charged by these cut- 
rents .  I n i t i a l l y ,  each sample charged as a whole ec a r a t e  t h a t  was determined 
by the t o t a l  current A t  collected and i ts capacitmce t o  i t s  surroundings. 
Different ia l  potent ia ls  between the Teflon surfaces and the plates  r e su l t  from 
charging the capacitors made up of these surfaces and requires currents t o  each 
aide of these capacitors. The magnitude of the current available t o  charge the 
Teflon-to-plate capacitor must depend on the  r e l a t i ve  areas of Teflon and metal 
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t i e s  of 

i n  
t e n t i a l  

t o  the beam, on the differences betweed the secondary entiasion proper- 
the two m t e r i a l s ,  and on f i e ld s  tha t  can def lec t  the electrons.  

configuration 4, the p l a t e  had no d i r ec t  access t o  the beam. The po- 
of the whole s a m ~ l e  Vas driven by the ne t  current t o  the Teflon sur- 

f ace. Because the  pla te '  could only co l l&t  "s tray" currents (e .g . , secondaries 
from the Teflon o r  beam electrons deflected by f i e ld s  around the sample), there 
was essen t ia l ly  no current available t o  cause d i f f e r en t i a l  charging, and thus 
anly a very small d i f f e r en t i a l  potent ia l  developed. 

In configu:ation 3, the Teflon area was twice tha t  of the metal p l a t e  ex- 
posed t o  the  beam. Evidently, the  Teflon area dominated the charging of the 
sample duting the f i r s t  20 t o  40 seconds of charging and caused the p la te  t o  
vover$hootlt (i. e. , become more negative than). i t o  equilibrium potent ia l .  A t  
t h i s  point, the p la te  emitted more secondaries than i t  received primaries. 
This resul ted i n  a ne t  posi t ive  current t o  the p la te ,  so  that- the  negative po- 
t e n t i a l  of the pla te  was reduced. 

I f  t h i s  description of the  behavior of the configuration 3 sample p l a t e  is 
correct ,  i t  must be supposed tha t  the configuration 2 sample p l a t e  a l so  "over- 
shoots" i t s  individual equilibrium poten t ia l  during the f i r s t  20 t o  40 seconds 
of charging (sidce the  r e l a t i ve  ereas of Teflon and exposed metal a r e  the same 
fo r  these two configurations). The f ac t  t ha t  the configuraticm 2 p la te  does 
not discharge must then be due t o  the  difference between the geometrical ar- 
rangements of the Tef 1011. e t r i p s  on the two damples . The exposed metal 'of con- 
f igurat ion 2 Was between the two Teflon s t r i p s ,  but the exposed metal of con- 
f igurat ion 3 was on thc edges of the sample. Since the Teflon surfaces were 
more negative tharl the pla te ,  a po ten t ia l  ba r r i e r  t ha t  prevented the secondary 
electrons from the p l a t e  from escaping existed i n  configuration 2. This i m -  
p l i e s  t h a t  the f i n a l  potent ia l  reached by the  p la te  i n  t h i s  configuration was 
more negative than the "equilibrium potential ' '  *hat t h i s  p la te  would have 
reached had it been exposed t o  the beam with no Teflon on it. 

Step 2 

In t h i s  s t ep  of the t e s t  sequence, the metal pl.ates of f u l l y  charged sam- 
ples  (i.e., both the pla tes  and Teflon surfaces charged as  a t  the end of 
s t ep  1) were grounded, and the Teflon w.as allowed to  charge. Some t e s t s  were 
run ih which the  metal p la tes  were grou:ided with the samples exposed to  the 
beam, and some with the samples shielded from the beam. Shielded samples crere 
grounded during probe sweeps and with t h s  probes stopped away from the sample. 
(Sweeps were made befote and a f t e r  the grounding of the platee t o  de teminc  
the potent ia ls . )  Samples exposed t o  the beam were generally grounded during 
probe sweeps so  tha t  the Teflon surface potent ia l  could be observed as charging 
of the Teflon.with the pla te  grounded began. Results a r e  i l l u s t r a t e d  i n  f ig-  
ure 4 for  a sample of configuration 3. In  the f igure ,  VT represents the po- 
t e n t i a l  of the Teflon surface and VM tha t  of the p la te  bcc'ore the p la te  i s  
grounded. The crosshatched areas show the d i f f e r e n t i a l  between the Tef Lon 
surcece and the  pla te .  The sample is  sketched i n  along the abscissas t o  indi- 
ca te  i t s  location. Figure 4(a) depicts probe t races  (voltage readings across 



the saniple) taken before and after  the p l a t e  was gtounded and with the sample 
shielded from the beam. Figures 4(b) and (c) depict  traces during which the 
p la te  was grounded and with ehe sample shielded from and exposed to  the beam, 
respectively.  In  a l l  cases, when the p l a t e  was groudded, the d i f f e r en t i a l  be- 
tween the  Teflon surface and the uhderiying p la te  was maintained, a t  l eae t  on 
the time sca le  of millisecotlds reQuired fo r  the probes t o  sense and adjust  t o  
the  change i n  potential .  Groundhg the  p l a t e  is equivalent t o  grounding one 
s ide  of a capacitor, with the other s i d e  ( in  t h i s  cdse, the Teflon sutface) 
open r i rcui ted;  the voltage acroae the capacitor does not change. Even i f  the 
beam i s  l e f t  on during the grounding of the pla te ,  the current t o  the Teflon 
surface i o  too small t o  change the  potent ia l  across the Teflon-plate capacitor 
noticeably i n  milliseconds. A s  shown in  f igure  4(c), the Teflon surface ex- 
posed to  ' the beam began to  charge a f t e r  the p l a t e  was grounded, a t  a r a t e  char- 
a c t e r i s t i c  of the Teflon-plate capacitor.  Charging of the Teflon surfaces with 
the  pla tes  grounded proceeded a s  i n  previously reported ( ref .  5) charging t e s t s  
of Teflon on grounded substra tes .  

Step 3 

In  t h i s  s tep,  the plate& were allowed t o  f l o a t  e l ec t r i ca l l y  (by opening 
the ground connection) with the  Teflon surface i n i t i a l l y  charged t o  i t s  equL- 
librium potent ia l .  As  has been noted ( f ig .  2), the pla te  charged negatively, 
causing the Teflon surface t o  become mote negative than i ts  equilibrium poten- 
t i a l .  Net current t o  the Teflon surface became posi t ive  (electroas out)  so 
t ha t  the Teflon-to-plate capacitor was discharging whlle the plate-to- 
surroundings capacitor was charging. That i s ,  the d i feeren t ia l  potent ia l  be- 
Lween the Teflon and the  plclte was being reduced by net  electron emission cur- 
ren t  from the Teflon while the potent ia l  of the p l a t e  witn respect  t o  i t s  sur- 
roundings was being made more negative by ne t  electron current t o  the  p la te .  

The samplest responses t o  s tep  3 of the t e s t  sequence with the 8-kilovolt  
beam are  i l l u s t r a t e d  i n  f igure  5 .  Evidently, the most important fac tor  i n  de- 
termining the r a t e  a t  which each sample p l a t e  charges is the  area of metal ex- 
poeed t o  the bee:. (f ig.  5(a)). The configuration 1 pla te  charged most rapidly 
and the ~onf igu ra t i oh  4 p la te  most slowly a t  every beam voltage tested.  The 
r a t e  a t  which the p la te  charged, i n  turn,  determined how large an excursion 
from i ts  equilibrium potent ia l  the Teflon surface made. This can be seen from 
5-kilovolt data ehawn i n  f igure 2; i t  i s  demoristrated more dramatically by the 
8-kilovolt  data shown i n  f igure  5(b). With an 8-kilovolt  beam (and a l so  with 
the 10- and 12-kV beams) the potent ia l  of the configuration 1 p la t e  changed 
rapidly during the f i r s t  few 8econds of chatging. Its potent ia l  exceeded ( in  
uiagnitude) the  dtfferencs berween the Teflon sutface potent ia l  and the beam 
iroltage (-2 kV) befote the d i f f e r e n t i a l  between the p la te  And the  Teflon sur- 
face had cime t o  change. The net r e s u l t  was t ha t  the Teflon surface potent ia l  
exceeded the beard voltage. When this happened, the electrons from the beam no 
longer reached the Teflon surface and the "capdcitor plate," which is  the Tef- 
lon surface, was e f fec t ive ly  open ci rcuf ted.  The d i f f e r en t i a l  between the Tcf- 
Lon s ~ r f a c e  dnd the p la te  was maintained during the p la te ' s  charging. Probe 
measureinsnts made 15 to  30 minucee l a a s  in the t e s t  sequenceo showed no change 
i n  t h i s  s i tua t ion .  The same r e su l t s  were obtained for t h i s  sample with the 



probe nwoeping across tha #urEaca and with 16 r r k 3 t % 0 n ~ 1 ~ ~ .  Claarly,  t h i s  behav- 
i o r  cannot be expectud i n  space, wlncra lona and highar anargy e lec t rons  pxe- 
elude the  p e s a i b l l i t y  of a Cruc "opsn c i r c u i t u  situat%m. Howavrsr, f t: daea in- 
d i c a t e  t h a t  insu la t ing  eurfecee e m  be dtfven f e r  more nogetlvo with ranpect t s  
the  env i romsnt  tk~an t h e i r  equiLSbrFum potent io le .  

A t  the oppoaita extreme, the configuret ion 4 sample charged s o  elowly ekoe 
with an 8-ki lovol t  beam (and a l s o  the  10- and 12-kV beem),  the  Tef Ian surfoec 
d id  not depar t  notlceebly from its equilibrium po ten t i a l  ( f e e . ,  had maximum 
excursions of <I00 V ) .  

Charging r a t e s  f o r  the  p la tes  of c o n f i g u ~ a t i o n  2 and 3 samples were i n t e r -  
mediate between those of configurat ions 1 and 4. A s  shown tar f igure  5 (a), the  
configurat ion 2 sample p l a t e  charged s l i g h t l y  f a s t e r  than did the  configura- 
tiori 3 p l a t e  with the  8-ki lovol t  beam. Tho di f ference  i n  charging r a t e s  of 
these  tvo sample p la tes  i s  more marked with the  5-ki lovol t  beam (f ig .  2) but  
appears t o  decrease with increasing beam voltage (i.e., f o r  t h e  10- and 12-kV 
beams). One can argue t h a t  the  configurat ion 2 sample p l a t e  was expected t o  
charge more quickly than the  configurat ion 3 p l a t e  because of the  t r a p p h g  of 
the  secondaries emitted by t h e  p l a t e  i n  the  configurat ion 2 sample. The reason 
f o r  the  decrease i n  t h e  d i f ference  between charging r a t e s  of these  two sample 
p la tes  with increasing beam voltage is  not  c l e a r .  It might be due t o  the  sec- 
ondary y i e l d  decreasing with increasing impact energ iw fo r  k i l o v o l t  primaries. 
This would reduce the  number of secondaries ava i l ab le  t o  be trapped and conse- 
quently reduce t h e  d i f ference  between the currents  t o  the  p l a t e s  i n  t h e  two 
configurat ions.  - . .  

The Teflon surfaces on the  configurat ion 2 and 3 samples behaved i n  a 
s imi la r  fashion a t  a l l  beam voltages tes ted .  I n  each case the  i n i t i a l  rise i n  
p l a t e  p o t e n t i a l  caused the  Teflon surface  t o  become more negative than i ts  
equil ibrium po ten t i a l ,  and i t  proceeded t o  discharge slowly back t o  equil ibrium 
a s  the  p l a t e  charged. The p l a t e s  f o r  these samples charged slowly enough t h a t  
the  Teflon surface  p o t e n t i a l  remained l e s s  ( in  magnitude) than the  beam voltage 
by a t  l e a s t  severa l  hundred v c l t s  and was therefore  ab le  t o  discharge toward 
equilibrium. 

NASCAP MODEL'; 

T1.e NASA charging analyzer program (NASCAP) is a computer code developed 
t o  ca lcu la te  the charging of objects  i n  three  dirnenslons. The code and i ts  
c a p a b i l i t i e s  a r e  described elsewhere ( re f s .  6, 8, and 9). For t h i s  study, ob- 
jects were defined i n  the  code t o  ropreaent t h e  configurat ion 2 and 3 eamples 
t e s ted .  Grid spacing was chosen t o  r e f l e c t  the  r e l a t i v e  eizeo of the  samples 
and the  t e s t  chamber, with the minimum number of g r i d  points  that gave a rea- 
sonable resolut ion on the  sample. This choice and t h a t  of the  time stepping 
option uaed were made t o  minimize computer time ( ra ther  than t o  maximize simu- 
l a t i o n  accuracy). Simulations were run according t o  t h e  " t ee t  tank" mode s f  
codu operation. 



NASCAP Objects 

Three objec ts  were defined i n  t h e  code f o r  t h i s  study; they a r c  i l l u s -  
t t a t e d  i n  f igure  6. Each db jec t  i s  compoeed of two metal p la teg  t h a t  a r e  one 
mesh u n i t  t h i c k  and have one-mesh-unit spacing betweea them ( f ig .  6(a)).  The 
"back" p l a t e  ( i . e . ,  the  otre f a r t h e r  from the  e l ec t ron  gun) was held at: ground 
p o t e n t i a l  during the  simt,lstion. Capacitance between the  two p l a t e s  was set a t  
200 picofarads t o  s imulate t h e  measured 200f30-picofarad capaci ty  of the  a c t u a l  
samples t o  t h e i r  surroundings. The "frontH p l a t e s  t h a t  were exposed t o  the  
beam were defined t o  zepresent  a bare metal p l a t e  (object  1, f ig .  6(b)), and 
t h e  configurat ion 2 and 3 sampled (objec ts  2 and 3, f i g s .  6(c) and (d), respec- 
t i v e l y )  described e a r l i e r .  Each p l a t e  was s i x  by e ight  surface  c e l l s  i n  area  
and one c e l l  th ick .  The g r i d  points  were 2.54 centimeters apa r t  i n  the  inner- 
most mesh i n  t h e  code.. Thus the  objec ts  modeled were 15.2 centimeters by 
20.3 centimeters ,  but  the  a c t u a l  samples were 15.2 centimeters by 20.6 cen t i -  
meters. The small d i f f e rence  i n  ac tua l  and modeled s i z e  should have had very 
l i t t l e  impact on the  r e s u l t s .  The bare m c t a L p l a t e  was used t o  compare the  be- 
havior  of p l a t e s  with and without su r face  insu la t ion .  Teflon su r face  c e l l s  
labeled  "X" i n  f igures  6(c) and (d) a r e  those Cells f o r  which current  and v o l t -  
age information was pr in ted  during simulat ions.  Figutes 7 and 9 show the  aver- 
age values f o r  these  c e l l s .  

For the  simulations i n  t h i s  s tudy,  s tandard EASCAP proper t ies  were used 
f o r  the  Teflon. The metal p l a t e s  were modeled as  aluminum, but  with a 
secondary-electron emission c o e f f i c i e n t  of 2.6 and. primary-electron energy t o  
produce niaximum secondary-electron y i e l d  f o r  normal incidence of 350 e lec t ron  
v o l t s  t o  descr ibe  the  y ie ld  of t rue  secondary e lec t rcns .  These choices a r e  
based on the  r e s u l t s  of a s tudy i n  which the  puedicted and measured chatging 
behaviors of mater ia ls  were compared ( r e f .  8).  

NASCAP runs were made t o  s imulate the  test sequences (s teps  1, 2, and 3 
i n  the  sec t ion  EXPERIMLIT DESCRIPTION) f o r  the  configurat ion 2 and 3 samples 
with 8- and 10-kilovolt  beams. 

Simulation Results  and Comparison with Data 

Results  or' the  NASCAP simulat ions of s t e p  1 of the  t e s t  sequence a r e  shown 
i n  f igure  7 f o r  the 8-ki lovol t  beam case f o r  ob jec t s  2 and 3. Data f o r  config- 
u r a t i o n  2 and 3 samples a r e  included f u r  comparison. The code predicted t h a t  
samplcs charge aomewhat more slowly than the  da ta  ind tca te .  However, o v e r a l l  
agreement seems r a t h e r  good. In  p a r t i c u l a r ,  the  potent ra l  of the  ob jec t  3 
p l a t e  was predicted t o  reach a maximum negative value and then dec l ine  i n  mag- 
n i tude ,  a s  is observed i n  the d a t a .  The po ten t i a l  of the  ob jec t  2 p l a t e  does 
not  decl ine ,  again i n  agreement with observation. The code output ind ica tes  
t h a t  t h i s  is due t o  suppression of the  secondary e lec t ron  emission from the  
pliate by l o c a l  f i e l d s  i n  the  case of ob jec t  2, as was surmised e a r l i e r .  It was 
a l s o  specula*ed e a r l i e r  t h a t  the p l a t e  may have "overshot" i t s  equil ibrium po- 
t e n t i a l  f o r  these  two sample configuratkons. 'Chis speculat ion i s  supported by 
the  predicted charging h i s t o r i e s  of the  metal 2 l a t e s  of th ree  ob iec t s  shown i n  
f igure  8. P le t2s  of ob jec t s  2 and 3 reached t h e i r  maximum negative po ten t i a l s  
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about b80 w l c e  l o rga r  ia magditilde than t k a f r  cquilibrilmr v o l u e ~ .  Object 3 
 plat^ discharged t o  equii ibrium p o t e n t i a l  e f t s r  aborit 8 nlbdutos t o t a l  charging 
tima; objsce 2 @ f a t &  ramaindd %o6 negative;" a s  a result of trappin$ erf second- 
o r i o e ,  This i l l u a t r o t e s  bhc kind of i n s i g h t s  i n t o  charging benHior  t h a t  
NASCAP cad pfovid8. 

B 

A t  the  beginning nh t he  sirnuletion 6f etep 2 ,  t he  p l a t e  was grounded ah8 
the  p i i tent ia ls  were recalcula ted  "imatedia tely" af  t e w h r d s  (actua l l y  tho codc 
takes a 0.001-see tithe e tep) .  @oft$, predic t ions  a r e  i n  accord with the data :  

1 
~ i i f e r e n t i a l  p o t e n t i a l  between the  Tefldn surface  and the  p l a t e  was mdintnined, 
Charging of the  Tefinn back t o  equil ibrium procseded as elpected.  b a i n ,  the  
cade predicted char&& t o  occur more slowly dron was ob88rvedS b u t  the  d i s -  

i 
( 

crepolncy wae not  gtBQt. i 
1 

Predic t ions  f o r  s t e p  3 of the  teat sequence a r e  mdch i e s ~  s a % i a i ~ e t o r y ;  
the  predicted r a t e  of charlfiag i n  t h i s  deep :*as much leas &an the  observed 
r a t e .  Tkis is f i l u a t r a t e d  ir f i g u r e  9 f o r  ob jec t  2 (canfigurat ion 2 da ta)  with - .  
o 10-kilovdlt  beam. The reasons f o r  thid a t e  not  p resen t ly  utiderstood. It may. 

i 
1 

be t h e t  iiimul&ioil inaccuracies due t a  choices of g r i d  sriee atid time stepping 
I 

opt ion  $re int teabdd by the  presence of l a rge  f i e l d s  due t o  the  precheryed Taf- 
lon surfaces .  Another pastiiibility is t h a t  port ibns of the  physic$ no t  modeled 

1 
i n  the code ate  more important i n  t h i e  s t e p  of the  test sequence than i n  o thers .  

1 
4 

Despite the  discrepancy betwe6A obsetved and predicted charging r a t e s  with 
t R @  Teflon pxeeharged, the  code does p red ic t  the  general  feakuree ef  the  da ta ,  
t h a t  is, t h a t  the  i n i t i a l  chargitig 6f the p i e t e  cauees the  Tef Lon su r face  t o  
become more negative than i ts  equil ibrium p o t e n t i a l  and subsequently t o  Jis- 
charge t m o r d  t h i s  p o t e n t i a l  a s  the  p l a t e  charges. 

SUMNARY OF RESULTS AWD COWLUSIONS 

The clraraing teepodse of composite metal-dielectric strueturcls has been 
invcst igpted expcrimerrtally and simulated with tlrc  ASCA CAP codc. Overal l ,  rlrc 
cadets prct l ict ions @era i n  good agreemefit with the  da ta ,  p a r t i c u l a r l y  consider- 
ing  the  uncer t a in t i e s  i d  tlie ma te r i a l  proper t ies  used a s  idgut  ( r s f .  8). D i s -  
crepadcics iri the time rcrrponsc do ind ica te ,  howevcr, t h e t  caution should be 
used i n  predf c t i n ~  behavior of ob jec t s  with la rge  d i f f e r e n t i a l  p o t e n t i a l s  bc- 
twecn adjacent  su r face  g r i d  pobnte. The code's predic t iods  can bc used t u  pro- 
vide  i n s i g h t  i n t o  c h a r g i w  rcaaponse. Seveta l  f ea tu res  of thc rlrargimg response 
of tlw eomposLta samples hove i n t e rcse ing  implicat ions f a r  the  c lmrgtnj~  bchav- 
i o r  of spacecraf t .  

Altlrouglr potentials on on e n t i r e  db jcc t  eon dlange r ap id ly  i n  response to  
clrilngcs in  i ts environment, d i f  f a r e n t i a l  po ton t i s l s  across tlrirr i n s u l a t o r s  
chungc much more elowly. Tlrc roLe of absolute clrarging depends on tire copncl- 
toner! of the  e n t i r e  objec t  t o  i ts environment and the net current  i t  r ~ c c i v r e  
fro111 tlrc c?nvirsnnront, Tlrc r o t e  of d i f f e rcn tbo l  charging bctwccn an insultrtlng 
ourdoce and the structure benceth it depends on Idre sapac i t e t~ce  bc.tuc.cn elrm 
and the ne t  dif icrcncc.  i n  currunt@ t o  tlrc two "plutes" a£ t h i s  c o p a c t w r .  Tlw 



j 

currones ov:i l l  nb L C  t o  c l~a rgc  these ar '  ous 
s u r f ~ c t ~  arcas  oi  motr.rialo avai lnble  t o  co 
on the propcr t ics  r rC  t l l ~ ~ s c  mntxriols  (8wh 
i t y )  and t h e i r  c l c c t r i c n l  intcreonncctton,  

"capacitors" dcpvrld on the  r c l a t  ive 
1 lclct w r r c n t  f r3n1 tlor rnvironmcnt , 
as  secondary c d s s i o n  and r e s i s t i v -  
on loca l  f i e l d s  thtat L +=I t r a p  low- 

energy ~brnitted p o r t i c l r s ,  and on any " a r t i f i c i a l "  sources ti u s  p a r t i c l e  
eml t t e r s ,  Factors t h a t  detcm-ndnc. tlresrx currents  a f f e c t  b d t  the r a t e s  a t  which 
the  various "capaci tors" cltatgc and the  po tnn t i a l s  a t  which equil ibrium with 
the  environment is a t t a ined .  

The capocitancc of thc spacecraf t  t o  its cnvironntent depends on i t 9  ovcr- 
a l l  s i z e ,  but tlrc capacitances at' various part-s of . the  spacecraf t  t o  one an- 
o ther  depend on the  spacec ra f t ' s  construct ion.  In gedernl,  the  spacecruft- to-  
environment capacitance i s  usua l ly  orders  o i  magnitude l e s s  than the  surfsce- 
t o - su r f j ce  capacitances.  This means tlrnt suddeh changes i n  the  po ten t i a l  of er 

( spacec ra f t  do  not  r e s u l t  ir. sudden lurge c h ~  rges i n  po ten t in l s  across t h i n  in- 
su la t ion .  Thus, such operat ions as a c t i v a t i n g  an e lec t ron  emi t t e r  do not pre- 
sen t  an immediate arc ing hazard t o  t h i n  insu la t i an .  However, i f  there  e r e  ia- 
su la t ing  s t r u c t u r e s  on the  spacecraf t  d i a t  have small capacitances t o  the  s t ruc -  
tu re ,  thesc w i l l  charge back to t h e i r  equil ibrium p o t e n t i a l s  much more quickly 
than the t h i n  i i ~ s u l s t o r s  with lasge capacitances t o  the s t r u c t u r e .  This  gives 
r i s e  to  the  p o s s i b i l i t y  of g r c e i a t i n g  Large d i f f e r e n t i a l  p o t e n t i a l s  between 
d i f f e r e n t  Lnsulating surf  aces afeez a sudden chai~ge i n  spacecraf t  p o t e n t i a l .  
F ina l ly ,  £arcing the  s t r u c t u r e  t o  remain o t  a f ixed p o t e n t i a l  r e l a t i v e  t o  the  
cnvirunnrent (by cmit t ing  el t*ctrons,  for exempic) wf.11 allow large d i f f e r e n t i a l  
po ten t i a l s  t o  b u i l d  up across t h i n  insu la to r s  on titno s c a l e s  of minutes o r  tens 
of n\in*~tc.s . 

Atrothcr consccpencc t*f the d i spnr i  t v  i n  cllarging r a t e s  Ln the  p o s s i b i l i t y  
of l l o~er~ l i ewt" ;  tha t  is, surf  aces can acquire potentials s i g n i f i c a n t l y  more 
nrgotivc (with respect t o  tl~cFr cnvironmcnt) than equil ibrium culcula t ione  
would ind ica te .  This is cxpected wlrcn there is an abrupt  change i n  the  cnvi- 
ronmcnt of .I prcclrnrgtvi spacccraf t . From on opcrration~ll point  of vicw, t h i s  
c f f t ~ c t  s l~ t~ i t ld  o n l y  h c  I tuzard~us  i f  tlw absolute spacecraft po ten t i a l  is of con- 
cern: for t3xmpla, if  two spacecraf t  a r c  nttemptttrp, t o  rendczvtws . 
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(a1 Charglng of plates, Tenon precharged. 

tbl Charging of prahdrged Teflon on floating plates. 

Figure 5. - Charging response of samples, seauence step 3 - 
8-kilovolt beam 

1 r MESH SIZE 9 ?MESH SIZE 

BEAM 
DIRECTION- 

FRONT PlATE 

(a) Side view, (bl Front view. object 1 
all objects. bare metal plate). 

(c) Front vlew. abject 2 Id) front view, object 3 
cconfigurdtlon 2). Iconflquration 3). 

Flgure 6 - NASCAP objects. 



A -EL. 
s la) Object 2 :configuration 2). 

-8 I. 
(b) Object 3 (configuration 3). 

Figure 7. - Comparison of predictions k i th  data - 8-kilovolt beam; alj  
samples initially at zero potential. 
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Flgure 8, - NASCAP predictions, charging of metal plates - 8-kilovolt 
beam. 
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Figure 9. - Charging with Teflon precharged - 10-kilovolt beam, 
configuration 2 
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