PARAMETER DEPENDENCE OF EQUILIBRIUM CHARGING POTENTIALS

Paul K. Suh and Michael C. Stauber

Grumman Aerospace Corporation

ABSTRACT

Equilibrium surface potentials for slab configurations (representative e.g. of a large solar power satellite) are determined under extensive parametric variations of material, solar exposure and substorm characteristics. The results can guide the material selection and design of large space systems to minimize dielectric breakdowns and reduce parasitic leakage currents on SPS.

1

INTRODUCTION

Future large space systems, such as a photovoltaic solar power system or a deployable antenna, will be of low-density construction ($\sim 10^{-5}$ g/cm³), employing various light-weight materials. Among the candidate materials being discussed the emphasis is on polymeric materials (Kapton, Teflon, etc) and composites (glass or graphite fibers in an epoxy matrix). Such dielectric materials may be expected to undergo a substantial evolution in their physical properties, including electrical characteristics, as a result of prolonged space environmental exposure. The electrical properties, in particular, may be strongly sensitive to environmental conditions (e.g. temperature), even at the outset, and in some cases (e.g. for composites) remain to be more fully characterized.

This uncertainty and variability in relevant material responses is a major complicating factor in the prediction of spacecraft charging effects for an energetic substorm environment, and provides the major impetus for this paper. Namely, the intent is to explore the consequences for the attained equilibrium charging potentials of systematic variations in such material and exposure related quantities as photoelectric current, electron backscattering yield, secondary electron yield from proton and electron bombardment, material resistivity, and substorm plasmic temperature. To identify the impact of such variations in their full context, the analyses include both primary electron and proton currents, together with all their secondary currents, as well as the resistivity-dependent bulk leakage current. The importance of considering resistivity variations can be gauged, for example, from Table 1, in which the bulk resistivity of Kapton and several glasses is seen to change by 4-5 orders of magnitude in traversing the temperature range 25 to $200^{\circ}C$.

The method of analysis utilizes (one-dimensional) Langmuir probe theory, applied to the self-consistent search for the equilibrated surface potential. The geometry employed generally is that of a flat slab, although some exploration is also made of a spherical or cylindrical collection surface. The slab configuration, in particular, is examined under conditions of both single and double sided exposure to the plasma charging currents, with one-sided solar exposure in some cases. For single-sided plasma exposure, the unexposed side is held uniformly at a reference potential. The case, where the shielded side currics an impressed potential gradient and floats to yield a zero net current to the exposed surface, corresponds to the inner cover slide surface of a solar array and is examined in a companion paper (Paper III-7, this conference).

It is noted that the shadowed slab side exposed to a substorm plasma can develop high negative potentials (tens of kilovolts) that may easily exceed the dictoctric breakdown strength of thin sheets (see Table 1). The analyses seek to identify possible adjustments in materials parameters that may prevent such exceedances.

It is also realized that the analysis approach employed has limited validity; in particular it is not adequate for describing conditions near spacecraft edges, nor does it consider the perturbation of particle trajectories that may lead to differential charging. Nonetheless, it is felt that these shortcomings do not seriously distort the influence of the various material responses on the charging process that is explored in this work.

1

PLASMA ORIGINATED CURRENTS

The large spacecraft is approximated by an extended slab, and a one-dimensional Maxwell velocity distribution

$$f(v) = \sqrt{\frac{m}{2\pi kT}} \exp(-\frac{mv^2}{2kT})$$
(1)

is assumed for the substorm plasma particles. The spacecraft surface potential V modifies the impinging charged particle distribution.

The incident plasma electron current is thus approximated (Ref. 1) by

$$J_{e} = J_{o} \exp(-\frac{\varepsilon_{s}}{kT}) \text{ for } V_{s} < 0$$

= $J_{o}(1 + \frac{\varepsilon_{s}}{kT})^{g} \text{ for } V_{s} > 0$ (2)

where the experimental values for the J_0 corresponding to $\sqrt{\frac{kT}{2\pi m}}$. Ne will be used. Here, $c_s = c |V_s|$, and N and e are, respectively, the electron density and charge. All other notations follow the conventional representation.

The exponential geometric parameter g ranges from 0 for the flat configuration discussed in this paper to 1 for a spherical configuration. Due to the comparatively large Debye length coupled with possible edge effects, the effective g may have a nonvanishing value. Note, however, that the geometric effect can in general be appreciable when $|eV_{\rm e}|/kT \gtrsim 1$.

For the incident plasma proton current $J_p = \xi J_o$, the experimental value of $\ell \approx 1/40$ is adopted. The J augmented by the effect of its secondary electron current $J_{p;i} = \phi J_p$ (where $\phi \approx 2.5$ for $V_s < 0$) can become the dominant charging current when the surface potential becomes highly negative. The effect of the surface potential polarity for d is opposite to that for electrons as given in Eq. (2).

Adopting the impact yield parameter (Ref. 2) for electrons of energy $e_1 = \frac{mV^2}{2}$, i.e., $\delta = \frac{7.4 \ \delta m}{\varepsilon_{m}} (\varepsilon_{1} + eV_{s}) \exp \left[\frac{2 \frac{\varepsilon_{1} + eV_{s}}{\varepsilon_{m}}}{\varepsilon_{m}} \right]$ (3)

that gives the maximum yield δ_m at energy ϵ_m , the secondary electron current is approximated by

$$J_{s} = 2 J_{1} J_{0} F$$
 (4)

where

(

 $J_{\perp} = 7.\hbar \ \delta_{\rm m} \ \frac{kT}{\epsilon_{\rm m}} \exp\left(\frac{eV_{\rm S}}{kT} + \frac{kT}{\epsilon}\right)$ Values of $\delta_m \approx \beta$ and $\varepsilon_m \approx 0.3$ KeV are adopted (Ref. 3) and

$$F = 3!i^{3} \frac{\sqrt{\pi}}{2} \operatorname{erfc}(y_{1}) \text{ for } V_{s} < 0$$

= $(3!i^{3} + (3y_{2})2!i^{2} + (3y_{2}^{2})i + y_{2}^{3}) \frac{\sqrt{\pi}}{2} \operatorname{erfc}(y_{5}) \text{ for } V_{s} > 0$
are $y_{1} = \sqrt{\frac{kT}{c_{m}}}, y_{2} = \sqrt{\frac{c_{s}}{kT}}, \text{ and } y_{5} = y_{1} + y_{2}$

whe

The backscattered electrons, on the other hand, constitute the high energy portion of the scattered electron spectrum. Since available data here are scant, the following simple approximation, using the backscattering yield parameter β , is adopted:

$$J_{bs} = \beta J_{o} \exp\left(-\frac{\varepsilon_{s}}{kT}\right) \text{ for } V_{s} < 0$$

= $\beta J_{o} \left(1 + \frac{\varepsilon_{s}}{kT}\right)^{t} \exp\left(-\frac{\varepsilon_{s}}{kT}\right) \text{ for } V_{s} > 0$ (5)

This expression often permits separating the backscattering effect out in the analysis, so that a straightforward reassessment of its contribution can be made as more data become available.

The leakage current is approximated by

$$J_{g} = \Delta V_{g}/R \tag{6}$$

where $R = \rho l$ with ρ and l representing, respectively the volume resistivity and the slab width. Currents as well as all associated quantities here are given per unit area (cm²).

PHOTOELECTRON YIELDS IN THE SPACE ENVIRONMENT

The photoelectron yield depends on the material work function and the width and peak of its energy distribution on the solar photon energy spectrum. Spacecraft surfaces in the space environment are, however, quickly contaminated and the surface contamination tends to cause inelastic scattering of the photoexcited electrons (Ref. 4).

The photelectron spectrum from such metals as gold, aluminium, and stainless steel in the space environment was observed to have an energy distribution similar to that for many nonmetals (for example graphite). The photoelectron energy distribution in general has a Gaussian form, peaking at $1\sim 2$ eV and tapering off rapidly toward higher energies.

In the absence of a comprehensive theory, on the basis of observed data the photoelectron energy E distribution (normalized to 1) produced by a photon of energy ω is determined by

$$N(E, \omega) = \frac{2h(\omega) E}{1 - \exp\left[-h(\omega)(\omega - \varphi)^2\right]} \exp\left[-h(\omega)E^2\right]$$
(7)

where φ is the work function.

(

Here
$$h(\omega) = \frac{1}{2E_m^2(\omega)}$$
, with the approximation

$$\mathbf{E}_{\mathrm{m}}(\omega) = \mathbf{E}_{1} \left[1 - \exp\left(\frac{\mu}{\Sigma} - \sigma_{\mathrm{m}}\omega^{\mathrm{r}}\right) \right]$$
(8)

for the range of $4.5 \le \omega \le 30$ eV. The $E_{m}(\omega) \rightarrow E_{1}$ toward the upper ω domain and represents the energy E at which N(E, ω) peaks.

Values for σ_n and E_1 , derived from empirical data, are

	Aluminium	Steel	Nonmetal
σı	2.84367 x 10 ⁻²	1.45236 x 10 ⁻²	0.292431
⁰ 2	-1.12782 x 10 ⁻²	2.59762 x 10 ⁻³	-8.82673 x 10 ⁻²
σ ₃	1.32354×10^{-3}	1.45428 x 10 ⁻³	6.29027 x 10 ⁻³
	-7.03183 x 10 ⁻⁵	3.56235 x 10 ⁻⁵	-1.59182 x 10 ⁻⁴
E _l (eV)	5	2	3

The photoelectron yield per incident photon of energy ω is approximated by

$$Y(\omega) = k\omega^{p} \exp\left(\sum_{n=0}^{4} k_{n} \omega^{n}\right) \quad \text{for } 5 \leq \omega \leq 17 \text{ eV}$$

$$= 0.193 \quad \text{for } \omega \geq 17 \text{ eV}$$
(9)

where

$$k = 2.456 \times 10^{6} \qquad p = -249.874$$

$$k_{1} = 104.388 \qquad k_{2} = -7.20837$$

$$k_{3} = 0.276707 \qquad k_{h} = -4.30132 \times 10^{-3}$$

Since the shape of the yields is similar for most of the metal as well as nonmetal cases, as discussed above, any desired adjustment can be made by modifying the parameter k. The photoelectron yield energy distribution is now determined by

$$Y(E, \omega) = Y(\omega) N(E, \omega)$$
(10)

The continuous and discrete solar photon intensity distributions (in photons/ cm²sec·eV) are approximated by

$$I_{\text{cont}}(\omega) = 1.3 \times 10^{19} \exp(-1.985 \omega) \text{ for } 4 \le \omega \le 11 \text{ eV}$$

$$= 8 \times 10^9 \text{ for } 11 \le \omega \le 15 \text{ eV}$$
(11)

$$= 1.2 \times 10^9 \quad \text{for } 15 \le \omega < 30 \text{ eV}$$

I = 2 × 10¹¹ at $\omega \approx 10.2 \text{ eV}$

The total photoelectron energy distribution in $(em^2 \text{ sec eV})^{-1}$ then is

$$Y(E) = \int_{E}^{\infty} I(\omega)Y(\omega)N(E,\omega) d\omega \qquad (12)$$

When the spacecraft surface potential V_s is positive, photoelectrons require an energy $E > eV_s$ to overcome the potential barrier. The photoelectron current \hat{J}_{pe} as a function of V_s and with a cut-off at $E \approx 30 \text{ eV}$, i.e.,

$$\hat{J}_{pe} (V_s) \approx \int_{eV_s}^{30} eY(E) dE$$
(13)

$$\approx \int eI(\omega)Y(\omega) \frac{exp[-h(eV_s)^2] - exp[-h(30-\phi)^2]}{1 - exp[-h(\omega - \phi)^2]} d\omega$$

is shown in Fig. 1. The \hat{J}_{pe} is nearly constant up to 1 eV, beyond which it rapidly becomes negligible as the positive surface potential increases to a few eV.

MODIFIED SECONDARY ELECTRON YIELD

The emission mechanism for secondary electrons by electron bombardment is similar to the case of photoelectrons. The shapes of the electron energy spectra in both cases are comparable with more than 80% of the secondaries emitted at energies below 20 eV (Ref. 5). As the surface potential turns positive, the secondary electron current thus becomes sensitively dependent on the energy distribution, due to the potential barrier.

Therefore, from Eq. (4), the following simple approximation is adopted for the electron-induced secondary electron energy spectrum,

$$J_{es}(\varepsilon, E) \approx 2J_1 J_0 F b^2 E \exp(-bE)$$
(1).)

where $b \approx 0.3$ (eV) and $\epsilon = kT$. The integrated secondary electron current modified by positive surface potential V is

$$\hat{J}_{g}(\epsilon, V_{g}) \approx 2J_{1}J_{0}F \int_{eV_{g}}^{\epsilon} b^{2} \Sigma \exp(-bE)dE \approx J_{0}\hat{J}_{sec}$$
 (15)

where, because of bc >> 1,

$$J_{sec} \approx 2J_1F(1 + beV_s) \exp(-beV_s)$$

SURFACE POTENTIAL IN THE DARK

As shown in Fig. 2, a spacecraft in the dark is exposed to a substorm, while its inner surface is maintained at the reference potential zero. The exposed surface in the dark becomes negatively charged, with currents being balanced by

$$J_e = J_p + J_{es} + J_{bs} + J_{ps} + J_{\ell}$$
(16)

Here, as modified by the equilibrium surface potential V_{a} ,

$$J_{e} = J_{o} \exp \left[-\frac{e |V_{s}|}{kT} \right]$$
 (electron current)

$$J_{p} = \xi J_{o} \left[+\frac{e |V_{s}|}{kT} \right]^{g}$$
 (proton current)

$$J_{bs} = \beta J_{e}$$
 (backscattering current)

$$J_{es} = J_{so} J_{e}$$
 (electron-induced secondary electron current)

$$J_{\ell} = \frac{|V_{s}|}{R}$$
 (leakage current)

$$J_{ps} = \phi J_{p}$$
 (proton-induced secondary electron current)

where

$$J_{so} = 7.4 \ \delta_{m} \ \frac{kT}{\epsilon_{m}} \ \exp\left(\frac{kT}{\epsilon_{m}}\right) \sqrt{\pi 3!} i^{3} \operatorname{erfc}\left[\sqrt{\frac{kT}{\epsilon_{m}}}\right]$$

 $at + \phi = 1.5$ is adopted for $V_g < 0$.

Observation indicates that, while the energies of the substorm plasma particles are higher than in quiet periods, their currents are reduced. The substorm electron current (in nA/cm^2) alopted in the analysis is approximated (Ref. 6) by

$$J_{0} = \sum_{n=0}^{4} A_{n} \epsilon^{n} \quad \text{for } 2 < \epsilon \leq 12 \text{ KeV}$$

$$= 0.5 \quad \text{for } 12 \text{ Kev} < \epsilon$$

$$A_{0} = 2.30725 \quad A_{1} = -0.255535$$

$$(17)$$

j,

where

$$A_{2} = -2.34739 \times 10^{-3}, A_{3} = 1.79609 \times 10^{-3}$$
$$A_{4} = -7.26494 \times 10^{-5}, \epsilon = kT$$

Eq. (16) gives

$$\beta = 1 - J_{so} - \left[\xi^{*}(1 + \frac{e|V_{s}|}{kT})^{g} + \frac{1}{J_{o}}\frac{|V_{s}|}{R}\right]exp(\frac{e|V_{s}|}{kT})$$
(18)

where $\xi^* = \xi(1 + \phi)$. In Fig. 3 A and B, respectively for the cases of g = 0 and 1, V_s is shown as function of surface potential β at various values of electron temperature $\varepsilon = kT$ and resistance R.

At g = 0, with a backscattering parameter β = 0.2, for example $V_s \approx (-55, -36, -14, -2)$ KV at ε = 25 KeV, and $V_s \approx (-17, -13, -7, -1.2)$ KV at ε = 10 KeV, respectively for R = (∞ , 10¹⁵, 10¹⁴, 10¹³) Ω . The corresponding surface potentials V_s at g = 1 with the same backscattering parameter β = 0.2 are V_s = (-33, -27, -13, -2) KV at ε = 25 KeV and V_s = (-10, -9, -6, -1) KV at ε = 10 KeV, respectively, for R = (∞ , 10¹⁵, 10¹⁴, 10¹³) Ω .

At high values of R, there is a large difference in V_s between the cases g = 0 and 1, indicating the possible extent of the geometric dependence of V_s . For the case of $g = \frac{1}{2}$, the corresponding V_s lies close to the midpoint between the values for g = 0 and 1. The high energy tail in the plasma electron distribution helps at high R values to support surface voltages considerably higher than the incident electron tempers' is (especially in the g = 0 case).

718

\$ -as

The relative magnitude of the various currents (in unit of J_{α} , i.e.,

 $j_1 = J_1/J_e$) in the approach to equilibrium is compared in Fig. 4, for example, for the case of R = $10^{15} \Omega$ and e = 15 KeV. Note that at further higher V_s , the initially insignificant j_p and j_{ps} become increasingly important (especially at g = 1), eventually overtaking the other j_4 .

The equilibrium reached at $\Sigma j_i = 1$ for $R = (10^{14}, 10^{15}) \Omega$, respectively, yields

 $V_{g} = (-8.6, -15.5) \text{ KV}$ for g = 1 $V_{g} = (-9.7, -22) \text{ KV}$ for g = 0

showing an appreciable dependence of V_s on R and g. The strong dependence of V_s on the resistivity is quite significant in view of the fact that R is a sensitive function of temperature (see Table 1) and the surface temperature can undergo large variations.

Also the equilibrium surface potential V_s , if it appears across a thin but high resistance material, may become sufficiently high to exceed the dielectric strengths shown in the Table 1. At low R, where the dielectric acts more like a conductor, the leakage current depresses the surface voltage.

Introducing a multiplier I for the plasma electron current

ĉ

$$J = I J_{0}$$
(19)

ORIGINAL PAGE IS

OF POOR QUALITY

the effect of current variation on V_s at $R = 10^{15} \Omega$ is shown in Fig. 5 for the case of g = 0. At low energy, the effect of varying I is small but becomes important at high energies.

SPACECRAFT POTENTIAL IN THE SUN

As shown in Fig. 6, the spacecraft is exposed to a substorm on the sun illuminated side, while the shodowed side is shielded and held at a reference potential zero. The effective solar intensity is a function of the sun angle θ , causing at large θ a slight modification to the case of spacecraft in the dark discussed previously. The sun exposure at small θ , however, becomes sufficiently strong that the surface potential may become positive.

The low energy electrons (emitted with insufficient vertical velocity) are trapped by the positive potential barrier. Because most of the secondary and photoelectrons are of low energies, a very sensitive balance is established between the surface potential and the currents. The determination of the effective currents ther requires a knowledge of the electron energy distributions.

719

First, consider the case of $V_{g} \le 0$. The surface potential V_{g} is determined by $d_{g} = d_{g} = d_{g} = d_{g} = d_{p} = J_{bs} = d_{ps} = 0$, yielding

$$\beta \approx 1 - J_{BO} - \left[\xi^* \left(1 + \frac{e V_{B}}{kT}\right)g + \frac{1}{J_{O}}\frac{|V_{B}|}{R} + \frac{J_{PP}}{J_{O}}\right] \exp\left(\frac{e|V_{B}|}{kT}\right) \quad (20)$$

For $V_{\rm g}=0$, Eq. (20) is reduced, with $\Sigma=1-J_{\rm go}-\xi^*$, to

$$\Sigma - \left(\beta + \frac{J_{pe}}{J_0}\right) = 0$$
 (21)

'n

requiring $\Sigma = (\beta + J_{pe}/J_o) \gtrless 0$ for $V_s \end{Bmatrix} 0$. Since the Σ (shown in Fig. 7) is independent of J_o , g and R, Eq. (21) itself is independent of g and R.

Since $\Sigma \approx 0.74$ at $\varepsilon = 25$ KeV and 0.49, at $\varepsilon = 10$ KeV, for example (with the backscattering parameter $\beta = 0.2$)

$$J_{pe}/J_0 \leq 0.54$$
 at $\varepsilon = 25$ KeV
 ≤ 0.29 at $\varepsilon = 10$ KeV

are required for $V_s \leq 0$. With substorm currents $J_0 \approx 0.5$ and 0.58 nA/cm², respectively, at $\varepsilon = 25$ and 10 KeV,

$$J_{pe} > 0.27 \text{ nA/cm}^2 \text{ at } \epsilon = 25 \text{ KeV}$$

> 0.17 nA/cm² at $\epsilon = 10 \text{ KeV}$

to charge the spacecraft surface positive.

For the case of $V_s < 0$, the equilibrium surface potential V_s at $R = 10^{15} \Omega$ is plotted in Figs. 8A and B as a function of backscattering yield β for $\epsilon = 25$ and 15 KeV, by varying J_{pe} (in nA/cm² at $V_s = 0$). The solid lines here are for the substorm currents J_0 of Eq. (17), while the dashed lines are for the doubled substorm current 2J_case [see Eq. (9)].

For $R = 10^{15} \omega$, there is an appreciable shift in the $\beta - V_g$ curves in going from g = 1 to g = 0 (i.e., from a sphere to an infinite plane), both at e = 25EeV (Fig. 8A) and 15 KeV (Fig. 8B). At $e \leq 5$ KeV for $R = 10^{15} \omega$, as well as at $R \lesssim 10^{13}$ for all electron temperatures, however, the shift generally becomes negligible. For $R \lesssim 10^{11} \Omega$, the surface potential V₀ readily turns positive.

For a given R, the effective β as function of V_g gradually becomes smaller as ε is reduced. For small J_{pe} ($\leq 0.1 \text{ nA/em}^2$), there is substantial latitude for β to keep V_g negative, especially when ε is high. As J_{pe} increases beyond a few tenths of nA/em², however, V_g is likely to turn positive. The $\beta - V_g$ curves rapidly reach a plateau as $|V_g|$ decreases, making the determination of the surface potential as function of β there delicate.

Relative strength of the currents at $\varepsilon = 15$ KeV and $J_{pe} = 0.01$ nA/cm² in units of $J_e = J_o \exp(-e|V_g|/kT)$, i.e.,

$$J_i = J_i/J_i$$

are shown in Figs. 9A and B, respectively, for $R = 10^{15}$ and $10^{13}\Omega$. Note that, especially at $R = 10^{15} \Omega$, all currents are in the same order of magnitude near equilibrium [By coincidence, $j_{pe} \approx j_p(g = 0)$ here].

The shifts in $j_p(g)$ and $j_{ps}(g)$ between the g = 1 and 0 cases are appreciable for $R \simeq 10^{15} \Omega$. For $R \lesssim 10^{13}$, the difference in the currents between the g = 1and 0 cases is small and thus ignored in the diagram.

For $R \gtrsim R_c = 0(10^{17} \Omega)$, the effect of j_ℓ is negligible and the material behaves as a perfect insulator (i.e., $R = \infty$). For $R < R_c$, j_ℓ increases steeply toward the equilibrium V_g , and, especially when β is low, j_ℓ becomes significant even at relatively high R. For $R < 0(10^9 \Omega)$, the material practically behaves as a conductor.

When $V_s > 0$, while the primary plasma electrons are accelerated toward the spacecraft, the emitted electrons are retarded by the potential barrier. Because of the Low energy of the secondary and photoelectrons, the balancing of the various currents for the positive V_s by

$$J_{e} + J_{f} - \hat{J}_{pe} - \hat{J}_{es} - J_{p} - \hat{J}_{bs} - \hat{J}_{ps} = 0$$
(22)

becomes delicate. Here, \hat{J}_{pe} and \hat{J}_{s} are given, respectively, in Eqs. (13) and (15), and \hat{J}_{ps} corresponds to \hat{J}_{es} (and \hat{J}_{bs}).

Solar incidence here is assumed to be nearly vertical, and the photoelectric current is normalized to approximately 1.5 rA/cm^2 at zero surface potential. Reduction of the solar intensity with an increased sun-angle may cause the spacecraft to become negatively charged, as discussed above. Because of $|eV_g|/kT\ll 1$ here, possible geometric effects in the electron attraction to the surface we negligible.

For $R = 10^9 \Omega$, the J_{ℓ} becomes significant and increases rapidly with $V_{\rm B}$. The equilibrium surface potentials are thus small ($V_{\rm B} = 0.92$ V and 0.8 V at KT = 15 KeV, respectively, for the T = 2 and 2 cases), and, in approaching equilibrium, the currents other than J_{ℓ} are nearly constant.

At low R, the J_{ℓ} thus becomes the controlling factor in the determination of V_s. The effective V_s as a function of c and R are shown in Fig. 10, again with $\beta = 0.2$ and $J_{pe}(V_s = 0) = 1.5$ nA/cm² (the solid and dotted lines are, respectively, for the I = 1 and 2).

The V is not much affected by the variation of R from 10^{11} to $10^{15} \Omega$. Below $10^{10} \Omega$, however, decreases in R give rise to a progressively stronger reduction in the effective V_s. Note also that as expected, the V_s for a given R is a decreasing function of average plasma electron energy ε , although the dependence is relatively weak.

SPACECRAFT TOTALLY IMMERSED IN A SUBSTORM

The case of a slab configuration spacecraft totally immersed in a substorm environment in the earth's shadow is similar to that of a spacecraft slab of infinite resistance unilaterally exposed to the substorm in the dark. With sun exposure on one side (see Fig. 11), however, a potential difference develops between the two surfaces.

If the incident solar intensity is weak, due to a large sun angle θ , the two surface potentials V_1 and V_2 remain negative. When the solar exposure becomes sufficiently strong, the illuminated side potential V_1 turns positive, while the dark side potential V_2 remains negative at large values of the bulk resistance R but eventually may turn positive for small R. The potential difference between the two surfaces induces a leakage current J_{θ} .

722

First, consider the case of $V_{1,2} \leq 0$, by writing

$$M_{1,2} = V_{1,2}$$
 (23)

The explicit current balance equations to be simultaneously solved are

$$\frac{M_1 - M_2}{RJ_0} + \left[\eta \exp\left(-\frac{eM_2}{kT}\right) - \xi^* \left(1 + \frac{eM_2}{kT}\right)^g\right] = 0 \qquad (24)$$

$$\frac{J_{pe}}{J_0} + \xi^* \left[\left(1 + \frac{eM_1}{kT}\right)^g + \left(1 + \frac{eM_2}{kT}\right)^g\right] - \eta \left[\exp\left(-\frac{eM_1}{kT}\right) + \exp\left(-\frac{eM_2}{kT}\right)\right] =$$

0

where $\eta = 1 - \beta - J_{so}$, $\xi^* = \xi(1 + \phi)$, and g is the geometric configuration parameter.

For the case of $M_1 = 0$, the above relations are simplified to

$$\frac{M_2}{R} = J_0 \left[\eta \exp\left(-\frac{eM_2}{kT}\right) - \xi * \left(1 + \frac{eM_2}{kT}\right)^g \right]$$
(25A)

$$(J_{pe})_{c} = \frac{M_{2}}{R} + J_{o}(n - \xi^{*})$$
 (25B)

Note that $(J_{pe})_c$ is the value of J_{pe} needed to raise the surface potential V_{l} to zero.

The M_2 is determined by solving Eq. (25A) as function of $\varepsilon = kT$, and the results are shown in Fig. 12 for the cases of various values of R and $\beta = 0.2$. The corresponding critical photoelectric current $(J_{pe})_c$ is in turn determined by Eq. (25B) as shown in Fig. 13. The impact of the geometric parameter variation from $g_2 = 1$ to 0 is generally negligible with low R but becomes noticable for $R \gtrsim 10^{15} \Omega$ as shown in Fig 13 and especially in Fig. 12.

When $eM_{0}/kT\ll1$, Eq. (25A) is reduced to

$$M_{2} \approx (\eta - \xi^{*}) / \left[\frac{1}{RJ_{o}} + e(\eta + g\xi^{*}) / k \pi \right]$$
(26)

The relation is further simplified for $(RJ_{a})^{-1} \gg e(\eta + g\xi^{*})/kT$ to

$$M_{\rm p} \approx \mathrm{RJ}_{\rm p}(\eta - \varepsilon^*) \tag{27}$$

where M, now becomes proportional to R.

The q is independent of R but is a function of e and approaches $\xi * \approx 0.07$ toward $c \approx 5.3$ KeV. Therefore, M₂ in Fig. 12 vanishes rapidly as c decreases toward 5.3 KeV. In Fig. 13, $(J_{pc})_e$ is seen to approach rapidly a limiting value as R decreases to the order of 10^{11} α (where the approximation (27) becomes good) and also to decrease steeply toward $c \approx 5.3$ KeV. This characteristic is expected, because the $(J_{pe})_e$ determined there by Eq. (25B) becomes (in conjunction with (27)) proportional to $\eta = \xi^*$ and independent of R.

As the unmodified J_{pe} exceeds $(J_{pe})_e$, the sun exposed side becomes positive. The low energy electrons in the secondary and particularly in the photoelectric currents on this side are then trapped by the potential barrier as discussed previously.

While $V_{1,2} < 0$, the Eqs. (24) are solved for the surface potential $M_{1,2} = -V_{1,2}$, with its corresponding leakage current $J_{\ell} = (M_2 - M_1)/R$. When the sun exposed side becomes positively charged (i.e., $V_1 = M_1 > 0$), while the shadowed side remains negatively charged, (i.e., $V_2 = -M_2 < 0$), the corresponding equations become

$$\frac{M_{1} + M_{2}}{R} = \hat{J}_{pe} + \hat{J}_{es} + \hat{J}_{bs} + J_{o} \left[\xi * \exp(-\frac{eM_{1}}{2kT}) - (1 + \frac{eM_{1}}{kT})^{g} \right]$$
$$= J_{o} \left[n \exp(-\frac{2M_{2}}{kT}) - \xi * (1 + \frac{eM_{2}}{kT})^{g} \right]$$
(28)

Here, because of the relative smallness of J_p on the sun exposed side (which is at a very low positive surface potential), a simple approximation of $i \approx \phi$ is adopted. The integrates \hat{J}_{pe} and \hat{J}_{es} are given, respectively, in Eqs. (13) and (15).

ORIGINAL PAGE IS OF POOR QUALITY

724

The $V_{1,2}$ as function of $J_{pe}(V_s = 0)$ are shown in Figs. 14A and B, respectively, for the cases of $R = 10^{15}$ and $10^{10} \Omega$, with $\beta = 0.2$. For $R \le 10^{11} \Omega$, $V_1 \approx V_2$ in the domain of $J_{pe}(V_s = 0)$ where $V_1 < 0$.

The effect of changing the geometric parameter g from 1 to 0 is apparent only when $|eV_{\rm g}|/kT$ is comparatively large, as seen from the figures. Note, however, that as V_1 rapidly turns positive while leaving the magnitude of the negative V_2 large, the resulting large potential difference between the two surfaces produces a correspondingly large leakage current J_{ℓ} . This large J_{ℓ} then negates the relative importance of the effect of the shifts in $J_{\rm p}$ and $J_{\rm ps}$ due to the variation in g, even if $|eV_{\rm g}|/kT$ is not small.

For $J_{pe} = 0$, $V_1 = V_2 < 0$, which, as stated above, corresponds to the surface potential of an isolated (i.e., $R \rightarrow \infty$) spacecraft slab unilaterally exposed to the substorm in the dark (see previous section and Figs. 3A and B). As J_{pe} increases, V_1 rises rapidly to become positive at $(J_{pe})_c$ (see Fig. 14) and quickly reaches a plateau value of a few to several volts.

This is due to the low energy of the secondary and especially photoelectrons, reculting in a rapid increase in the current attenuation when the surface potential turns positive and begins to rise.

The value of the bulk resistance R primarily affects V_2 . For $R = 10^{15} \Omega$, because the leakage current J_k is relatively small, V_2 remains essentially the s-me throughout the variation of $J_{pe}(V_s = 0)$, while V_1 increases rapidly and turns to stabilize at a small positive value.

When R is reduced to $10^{10} \Omega$, because of the large leakage current J_{ℓ} , V_{1} increases and turns positive at relatively slower rate than for R = $10^{15} \Omega$, while V_{2} keeps increasing and may change sign to become positive, especially in the low ϵ domain.

For a given $J_{pe}(v_s = 0)$, V_1 and V_2 are, respectively, an increasing and decreasing function of R, while both $V_{1,2}$ are decreasing functions of J_0 . In a typical substorm environment, the sun exposure may turn both $V_{1,2}$ positive for $\varepsilon < 5.3$ KeV and (in general) R < 10¹⁰ Ω . The positive excursion of V_1 and V_2 is restricted to a few volts.

725 C-9

SUMMARY AND CONCLUSIONS

The primary objective of this paper has been to describe the dependence of the charging process for dielectric surfaces on the various material response characteristics. This was done with the intent of exhibiting the ranges of magnitudes over which certain materials parameters either have a significant influence on the charging process or contribute only weakly to the charging levels attained. For this purpose it was important to include in the analysis all the currents involved in the equilibration of the charging potential. Where possible the material dependence of these currents was described by variables to facilitate parametric excursions. The main areas treated in the analyses and the chief conclusions derivable from the results are as follows:

(

The influence of bulk resistance on the charging potential was analyzed parametrically for $R \gtrsim 10^{10}$. The results show that for the lowest part of this resistance range the leakage current becomes a dominant factor in the equilibration process. For high resistance values the shadowed side of a dielectric slab in a substorm environment can develop a large negative potential. In this case the otherwise relatively insignificant plasma proton current and its secondary electron current may assume a dominant role in preventing further growth of the negative potential. In view of the conspicuous dependence of equilibrium potentials on dielectric resistivities, the large variability of resistivity values for important candidate materials makes the prediction of charging potentials problematic. Also, for dielectric materials of a few mils thickness, such as Kapton sheets, the potential differences developed are frequently sufficient to produce dielectric breakdown. Repeated breakdown in turn may lead to progressive changes in resistivity.

For a sheet of dielectric material the equilibrium potential V_s on the sun-illuminated side tends to saturate for $J_{pe} \sim 1 \text{ nA/cm}^2$. The saturation V_s is a few volts positive and depends only weakly on kT. The largest effect on V_s is in the range 0 - 0.5 nA/cm², where V_s moves from large negative (kV) values to small positive values. This dynamic behavior is important in sun-angle variations and terminator crossings. If the bulk resistance of the sheet is large, the shadoved side potential settles at a large negative value; however, for a sufficiently low resistance (~10¹⁰ ohm-cm²) both sides may become positive.

An analysis of the sensitivity of the charging process to the value of the backscattering yield β shows the following trend: If β is significantly larger than 0.2, then at lower substorm plasma temperatures (e.g. kT ≤ 5 keV), even a shadowed surface may turn positive. However, for large kT (> 10 keV) the influence of β on the attained surface potential V_g becomes progressively weaker.

REFERENCES

- 1. Langmuir, I. and Mott-Smith, H. M. (1920), Phys. Rev., vol. 28, no. 717.
- 2. Sternglass, E.J., Phys. Rev., vol. 80, p. 925, 1950.
- Willis, R.F. and Skinner, D.K., Solid State Communications, vol. 13, p. 685, 1973.
- Feuerbacher, B. and Fitton, B (1972), J. Appl. Phys. vol. 43, no 15, p. 15, 1972.
- 5. Grad, R.J.L, Knott, K, and Pedersen, A., Photon and Particle Interactions with Surfaces in Space, D. Reidel Pub. Co., Dordrecht-Holland; 1972.
- 6. Stevens, N.J., Lovell, R.R., and Purvis, C.K., Proc. of the Spacecraft Charging Technology Conf., vol. 735, 1977.

	DIELECTRIC STRENGTH (VOLTS/MIL)	
TEFLON FEP	10 ¹⁸ (25-175°C)	8-10 ³ (0.5 MIL) - 4-10 ³ (4 MIL)
KAPTON	10 ¹⁸ (25°C) - 10 ¹⁴ (200°C)	7.10^3 (1 MiL) - 4.6.10 ³ (3 MIL)
BOROSILICATE GLASS	5-10 ¹³ (25°C) - 5-10 ⁹ (200°C)	1·10 ⁴ - 2·10 ⁴
FUSED SILICA	10 ¹⁸ (25°C) - 5-10 ¹³ (200°C)	1-10 ⁴ - 2-10 ⁴
SODA LIME GLASS	10 ¹¹ (25°C) - 5-10 ⁷ (200°C)	1·10 ⁴ - 2·10 ⁴

Table 1 Electrical Characteristics of Selected Dielectrics

1003-78/82-1

Fig. 1 Attenuation of Integrated Photoelectric Current by Positive Surface Potential Barrier \mathbf{V}_S

Fig. 2 Substcrm Plasma Generated Charging Currents Under Eclipse Conditions

728

Fig. 3A Éffect of Backscattering Yield and Leakage Currents on Equilibrium Surface Charging Potential for Infinite Flat Surface (Typical Substorm Currents in Eclipse)

łċ

Fig. 3B Effect of Backscattering Yield and Leakage Currents on Equilibrium Charging Potential for Spherical Surface (Typical Substorm Currents in Eclipse)

Fig. 5 The Equilibrium Surface Potential Vs as Function of the Backscattering Yield β for Various Current Multiplyer I and Electron Temperature kT (g = 0 Case at R = 10¹⁵ S2)

Fig. 7 Effect of Combined Backscattering/Photo-Electric Current at Zero Surface Potential on Polarity of Equilibrium Charging Potential $(\Sigma - (\beta + J_{pe} (0)/J_e (0)) \ge 0 \rightarrow V_s \le 0)$

Fig. 8A Surface Charging Potential as Function of Backscattering Yield β for Various J_{pe} (V_s = 0) Values Appropriate to Large Sun Angles (kT = 25 keV; R = 10¹⁵ S2)

Fig. 8B Surface Charging Potential as Function of Backscattering Yield β for Various J_{pe} (V_s = Ö) Values Appropriate to Large Sun Angles (kT = 15 keV; R = 1015 S2)

Fig. 9A Surface Potential Dependence of Various Charging Currents (Relative to $J_e = 1$) in Approach to Equilibrium ($R = 10^{15} \Omega$; $kT = 15 \text{ KeV}; \beta = 0.2; Jpe (V_s = 0) = 0.01$ nA/cm^2)

í

Fig. 9B Surface Potential Dependence of Various Charging Currents (Relative to $J_e = 1$) in Approach to Equilibrium (R = 1013 Ω ; kT = 15 KeV; $\beta = 0.2$; J_{pe} (V_s = 0) = 0.0 i nA/cm²)

Fig. 10 Positive Surface Potential V_s As Function of Average Plasma Electron Energy kT and Resistance R. (Jpe (V_s = 0) = 1.5 nA/cm²)

Fig. 12 Shadowed Side Surface Potential V₂ for Sun-Illuminated Side Potential V₁ = 0, as Function of Resistance and Electron Temperature (Backscattering Yield $\beta = 0.2$)

- Fig. 14A Equilibrium Charging Potentials on Slab Immersed in Substorm Environment (One Side Sun-Illuminated) as Function of Jpe $(V_S = 0) (R \simeq 10^{15} \Omega; \beta = 0.2)$
- Fig. 14B Equilibrium Charging Potentials on Slab Immersed in Substorm Environment (One Side Sun-Illuminate J) as Function of J_{pe} (Vs = 0) (R = 1010 S2; β = 0.2)