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SUMMARY 

( A large (lm x 1Oa) flat surface of conductive material  was biased t o  high 
voltage (f3000 V) t o  simulate the  behador  of a large eo la r  array i n  low ear th  
orb i t .  The model "array" was operated i n  a plasm& environment of 103-10~/cm3, 
with suff ic ient  f r ee  space around it f o r  the  resu l t ing  plasma sheaths t o  de- 
velop unimpeded for  5-10 meters l n t o  t he  surrounding plasma. Measurements of 
the  resu l t ing  sheath thickness a s  8 function of plasma density and applied 
voltage were obtained. The observed thicknees varied approximately as  v3I4 
and lp1I2 as would be expected fo r  space charge l imited flow between large 
plane surfaces With a constant source current density. This e f f ec t  appears t o  
limit t o t a l  current leakage from the t e s t  "array1' u n t i l  sheath dimensions ex- 
ceed about 1 meter. 

Total leakage current w a s  a l so  measured with the "array" biased 0-4 kV 
from end t o  end, f loat ing i n  eq!zilibrium with the  ambient plasma. The posi t ive  
end of the  array was observed t o  f loa t  a t  +.93 V, with a t o t a l  current leakage 
t h r o w  the plema s l i gh t ly  under 2 d / m 2 ,  o r  0.7 watt/ft2. 

INTRODUCTION 

Hardware and techniques have recently been developed t o  adapt the  large 
thermal vacuum t e s t  chamber at NASA Johnson Space Center t o  simulate the  
ionospheric plasma environment character is t ic  of low ear th  o rb i t  (LEO). 
Plasma density, flow direct ion and magnetic f i e l d  strength were controllable 
for t e s t  purposes within t he  20 meter diameter chamber, Plasma simulation 
and t e s t i ng  on t h i s  large scale  i s  expected t o  become of increasing value as 
requirements t o  operate large systems at high voltage increase. We report  
here the  i n i t i a l  r e su l t s  obtained i n  t e s t s  of a 1 meter by 10 meters simulated 
high voltage so la r  array,  typ ica l  of development t e s t s  which w i l l  require 
t h i s  type of f a c i l i t y .  

The t e s t  model used consists of roughly one square meter of  ac tua l  so la r  
c e l l s  a t  the  top of the  panel, with the remaining 9 meters simulated by a 
panel of conductive p l a s t i c  material  of suf f ic ien t  in te rna l  resistance t o  be 
biased at several  ki lovol ts  end-to-end. The resul t ing panel surface poten- 
t i a l  varies i n  an app~oxlmately l i nea r  manner, the  same as would be obtained 
from a ~ t r i n g  of very many so la r   cell^ connected i n  the  simplest s e r i e s  
configuration t o  give the  same high voltage output end-to-end. Copper s t r i p s  
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LEO PLASMA CrnRENS' LEAKAGE 

Although apace i s  a very good vacuum, it is not absolute and the  very th in  
residual "gases" present a r e  capable of causi ng sf gnificant e l e c t r i c a l  in ter-  
actions under cer ta in  conditions. This has been noticed par t icu la r ly  by vari- 
ous s a t e l l i t e s  i n  geosynchronous orb i t  (GEO), which a re  observed t o  charge up 
t o  surface potentiale of  several  ki lovol ts  under so la r  eclipse/geomagneti c 
"storm" conditions. The,embient plasma i s  too t h i n  t o  effect ively bleed off 
the  charge acquired from "storm" radiation absorbed by the  s a t e l l i t e s  (refs.  
1 and 2) .  

In LEO, the  denser plasma, eas i ly  overcomes any radiation charge build- 
up. T h i s  should eliminate the  problems q i t h  unwanted charge build-ups 
observed i n  CEO but r e su l t s  i n  a new problem f o r  large high power so la r  
arrays due t o  the  exact inverse of the  GEO problem. In  LEO, even necessary 
high voltages may be bled off  by the dense ambient plasma. 

Feas ib i l i ty  studies of the SPS concept have ident i f ied  this as  a poten- 
t i a l -  p r o b l e ~ ~  i n  attempting t o  operate the  large so la r  arrays a t  high voltages. 
Reference 3 i n  par t icu la r  observed t h a t  current leakage t o  space (per uni t  
area) would increase at high voltage by orders of magnitude over t h a t  expe- 
rienced by present day low voltage systems, based on extensive laboratory 
t e s t  md analysis using small (1-20 cm) surfaces a t  high voltages. Assuming 
cer ta in  'scaling laws observed t o  be approldmately t rue  on the  1-20 cm scale 
!in e f fec t ,  assuming some constant sheath conductance per unit  s rea  between 
the  array and the plasma), they calculated the  power losses  due t o  these 
pares i t i c  currents shown i n  f igure  1. The projected loss  for  the  15 kw array 
wouid exceed so la r  c e l l  output f o r  voltages exceeding +2 kV o r  -16 kV fo r  a 
t y ~ f c a l  Shut t le  o rb i t  near the  F2 ionospheric maximum. 

An a l te rna t ive  theoret ical  analysis indicates t h a t  qui te  dif ferent  scaling 
re la t ions  should be expected t o  apply. By t h i s  analysis,  current collection by 
large so la r  arrays should be controlled by (plasma) charge separation f ie lds ,  
which should form space charge lim3.ted "sheaths" t h a t  confine the  current col- 
l ec t ing  voltages on the  arreys within these sheaths. Dis t inct  outer boundaries 
t o  t he  current col lect ing sheaths sumounding a high voltage surface should be 
expected t o  reach a l imit ing s i z e  of the  order of 1 meter/kilovolt, nearly in- 
dependent of the  e ize  of the  high voltage surface. When the assumptions i n  
t h i s  analysis a r e  val id ,  t o t a l  current collected depends only on +.he outer eur- 
face area of sheath available t o  intercept ambient ( d r i f t )  currents exis t ing i n  
the  undisturbed plasma outside the  objects'  sheath. The resu l t ing  current mul- 
t i p l i ca t ion  factor  a t  any voltage would be the r a t i o  of outer  sheath surface 
w e a  t o  obJect surface areas, a8 i l l u s t r a t e d  by f-Qure 2. (In ef fec t ,  oheath 



II conductance" per unit  area  becomes a function of both voltage and s i ze ,  ra ther  
thari a constant a s  i n  some overeimpllfied lumped c i r cu i t  element analogies. ) 
For i l rue t ra t ion ,  we asam$ plslslda paremeters suCh t h a t  the  resu l t ing  Gheath 
thiuknese grows from LO cm at A100 V t o  10 xhetera at  f10 kV. TRis sheath be- 
comes very large compared t o  the  10 cm sphere, the  t o t a l  current collected in- 
creasing by nearly l o4  ( a  -N high "conductsnce" sheath). The same plasma 
sheath, around a 1 km "sPS" array, has a very small r a t i o  of sheath t o  object 
s ize ,  The t o t a l  current collected should.increase by only a fe:w percent, a 
very Low sheath "conductance" which becomes even lower with increased voltage. 

Operating i n  t h e  large chamber at  JSC, it is  possible t o  observe the 
growth of these sheaths around a 1x10 meter object with 0.1-10 k V  applied. 
T h i ~  permits a t e s t  of t h e i r  behavior i n  "free space'' without the  inevitable 

( w a l l  ef fects  due t o  sheath growth i n  smallei- chambers. 

TEST SET-UP FOR SHEATH STUDIES 

The performance of an actual  t e s t  on the  scale  of 10 meters available i n  
the  large chamber was needed t o  detemine which ( i f  e i t h e r )  scaling re la t ions  
are  applicable t o  large so la r  arrays. Figure 3 shows the layout of the  basic 
configuration used fo r  most t e s t s .  The high voltage panel ("sPS") was hung 
near the  center of the  chamber, with 7-10 meters oT free  space available i n  
a l l  directions fo r  unobstructed development of the  high voltage plasma 
sheaths. l'he expected extent of sheath development i s  i l l u s t r a t e d  for  an 
SPS model i n  s e r i e s  connected configuration, with high voltage a t  top and 
Sottom a t  ground, fo r  two typical  sheath thicknesses of 1 meter and 3 meters. 
The three probes labeled 22-24 can be moved horizontally from outside the 
sheath t o  locate the  outer sheath boundary (point of f i r s t  observed change 
i n  plasma conditions). The sheath and associated e f fec t s  could a lso be 
observed visually using low l igh t  TV cameras a t  the  f i r s t  and t h i r d  f loor  
levels .  Large solenoid co i l s  around the chamber provided control of the 
ve r t i ca l  magnetic f i e l d  from 0-1.5 gauss. Plasma density and electron tem- 
perature measurements were oktained from 15 half  inch spherical  Langmuir 
probes located a t  various points around the  chamber, 

Flasme. Generation 

Plasma generation was available from three devices. A 30 cm KalLTman 
thrus te r  borrowed from LeRC was used with argon gas t o  generate flowing 
plasma densi t ies  of l o 4  t o  lo6 ( c m ~ ~ ) ,  directed e i ther  horizontally (across 
the  magnetic f i e l d )  from the t h i r d  level. i n to  t he  face of the  panel o r  
ver t ica l ly  from the  center of the f loor  (along the magnetic f i e l d )  along the  
length of the panel. Plasma electron temperatures varied from 0.5-2 ev, 
being typical ly  1 ev. Ion temperatures and flow velocity were not d i r ac t ly  
measured, flow enertg is estimated t o  have varied from 15-25 ev. Predomi- 
nately (monatomic) ArS ions were observed i n  the chamber, however s ignif icant  
numbers of N2+, H~o', and HO' and some other species were observed. These 
may const i tute  a s ignif icant  (themnal?) population of charge exchange o r  
other secondary ions i n  the  plasma, created from the residual gas. 



A 6 inoh Kaufrcarrtr t h rus t e r  devise was fabricated a t  JSC t o  provide a lower 
dehsity source, ueing Y9, N2r and He a s  well a s  argoh &s the  input gas* Pl&ama 
densi t ies  of 102 t o  10~'*(crn-3) Were observed, e i t h e r  flowing ve r t i ca l l y  frob 
center f loor  o r  diffused from a horizonthl  flow acmes t he  one meter level 
above the  floor* Blectron temperature 3as typ ica l ly  e l igh t ly  less t h a i  1 eV. 

The t h i r d  source of plas!ha employed was a large 5 meter loop antenna, 
driven at 1-5 MHz t o  exc i te  #m irregular plesms fro& the  res idual  neutra l  cham- 
ber gases. Properties of t h i s  plasma were qu i te  di f ferent ,  dens i t i es  estimated 
a t  103-105 (cm-3) with electron temperature about 2-4 eV (based on 1/2" spheri- 
ca l  Laagmuir probe currents) .  

SPS Model fo r  Test 

Figure 4 shows the  physical dimensions of the  "SPS" nlod .el as t e s t  ed ,  as  
w e l l  a s  locat ion and iden t i f i ca t ion  of avtlilable t e s t  connect ions t o  t he  
copper contact s t r i p s .  The actual  dimensions dif fered s l i gh t ly  from the 
nominal l x l O  meter design for  ease of fabrication.  For t e s t  purposes, the  
array was operated i n  each of th ree  e l e c t r i c a l  configurations shown. The 
"series connected ( f loat ing)"  configuration i s  t h e  actual  case which would be 
obtained i n  space; with currents closing from the  posi t ive  voltage (V,) end 
of the array,  thrcugh the  conducting plasma, t o  t h e  negative portion of the  
arrsy.  The ckamber walls  and l ab  ground a r e  not involved i n  t h e  c i r c u i t  a t  
a l l  (except i n  determining the  roughly uniform "plasma potefitial" outside t h e  
sheaLhs). The r e l a t i ve  potent ia l  of the  e n t i r e  test arrey and f loa t ing  power 
supply w i l l  adJust: i t s e l f  r e l a t i ve  t o  the  plasma potent ia l  so t h a t  the  t o t a l  
electron current ccl lected along the  posi t ive  voltage portion of the  arm$ 
exactly equals the  t o t a l  ion current collected along the  negative portion. 
The locat ion of t he  point elong the  array which i s  a t  "plasm ground" poten- 
tial w i l l  be inversely proportional t o  t he  rela=kive ambient current densi t ies  
of ions and electrons i n  the  f ree  plasma. For typ ica l  conditions, this w i l l  
r esu l t  i n  t he  array "floating" 97-99% negative with respect t o  pLasmti 
potent ia l .  

Since operat,ion i n  the  ful l3  ~ ~ o a t i n g  configuration was physically 
awkward, most " ~ e r i e s  connectedt' t e s t i n g  was done w i t h  the power supply and 
one end of the  array grounded t o  t h e  chamber Clalle. This was equivalent t o  
t e s t i ng  t h e  negative o r  posi t ive  portions of a f loat ing array individually,  
with the return current path closing through the  chamber wall  ( v i a  the  plasma). 
I n  e i t he r  case, all voltage drops from arrey surface potent ia l  t o  plasma 
potent ia l  a re  contained within t he  sheath. The outer  surface of the  sheath 
is  at plasma potent ia l .  The plasma i s  effect ively  a perfect ly  conductiw 
nredik with constant i n t e rna l  potent ia l  (within a fac tor  of k ~ ) .  

A t h i r d  configuration frcquent1.y einployed, fo r  ulaximum simplicl t y  of 
operation and data analysis,  was " c o n s t ~ n t  HIr" w i t h  the  e n t i ~ * e  surface of t h e  
array a t  the  same potent ia l  and all. currcnt returning through the  plasma t o  
the chamber walls. 



T h i ~ ;  test object  was designed t o  produce the  extreme values of current 
leakage posaible from a large so la r  array o r  other high voltage surface. 
To e l i r l n a t e  confusion from attempting a correct  treatxilent of the  e f fec t  of 
re la t ive  surface area and cofifiguP$tion of conductive and insulated portions 
of the  surface df ar. array,  the  en t i r e  front surface (except the  actual  so la r  
c e l l  section) was made conductive. ' h e  ''SPS" model qhould therefore generate 
the  large scale  (outer)  sheath configurution believed t o  
tan te  i n  determining i ts equilibrium interact ion with an 
currents collected *ill not be reduced by any insulation 

be of primary impor- 
ainbient plbsma. The 
factor.  

Test Objectives 

I n  order t o  test the va l id i ty  of the  proposed approach t o  scaling calcu- 
la t ions  of plasma current leakage based on r e l a t i ve  sheath t o  object  s ize ,  
three primary topics  were ident i f ied for  investigation: 

(1) Existence, sharpness and s i ze  of the  e a e c t e d  outer  sheath boundary 

(2 )  Equilibrium f loa t ing  potent ia l  of a large.  pariel (array) with fixed 
voltage d i f f e r en t i a l  along its length 

(3)  Magnitude of leakage currents induced to/from large surfaces a s  a 
function of Voltage (actually,  sheath s i z e )  

A secondary topic  was the  possible existence and behavior of t ransient  current 
pulses ( e l ec t r i ca l  breakdown o r  "arcs" t o  the  plasma) reported t o  occur i n  
smhller sca le  experiments ( refs .  3 and 4). 

EXPERIMENTAL RESULTS 

The fundamental result achieved was d i rec t  observation of the  existence, 
form and dimensions of t he  plasma sheaths formed about the  high voltage 
panel. Leakage currents between the  panel and the surrounding plasm,  through 
the observed sheaths, were recorded for  comparison with t h e  theoret ical ly  
expected current transmission capacit ies of t he  sheaths. The existence and 
form of t he  sheaths was observed by two independent means, both of which 
detect t he  location and "'sharpness" of the outer boundary with minimum 
disturbance of i ts  configuration by physical intrusion of hardware,.. 

Sheath Observation by LLW 

Figure 5 shows a typi ~al LLTV image of the se r ies  connected sheath, with 
surface p o t e n t i d  on the  SPS increasing from 0 a t  the bottom end t o  1 KV near 
the  top (actual ly  about t he  center of the  panel) of the  picture.  The sheath 
is the dark area, seen t o  increase approximately l inear ly  i n  thickness from 
0 at 0 volt8 t o  perhaps 1-2 meters at 1 KV. The outer boundary is generally 
ra ther  sharply defined i n  the  LLTV image, QS exf r~cted from the space charge 
l imited th i cknea~  hypothesis. 



The sheath is frequently v i s i b l e  on LLTV, an a dark region i n  f ron t  o f  
t h e  panel which expands o r  contrac ts  as a function of voltage an t h e  panel 
Face, when viewed under sufficiently high plasma density canditiono agains t  
a dark background. We bel ieve  t h e  sheath region is dark because with 
e lec t rons  ( o r  ions )  excluded, l i t t l e  >f t h e  ambient plasma rec.ombinatisn/ 
de-excitation leading t o  photon em+ on occurs. In  any case, accelera t ion 
of ions ( o r  e lec t rons )  i n  t h e  sh . leads  t o  a reduction i r l  number densi ty  
by more than an order o f  magnitude. The sheath becomes unobservable when 
t h e  ou te r  boundary becomes l a rge  and curved, not p a r a l l e l  t o  t h e  l i n e  of 
s igh t ,  o r  viewed agains t  a b r igh t  background (such a s  t h e  aluminized mylar 
toward t h e  t o p  of f ig .  5) .  

Sheatb Detection by Probes 

The second method involved watching for an a l t e r a t i o n  i n  t h e  observed 
I vs. V current  co l l ec t ion  c h a r a c t e r i s t i c  of  a moveable Langmuir probe as it 
approaches and en te r s  t h e  outer  boundary of  t h e  sheath from t h e  ex te rna l  
plasma ( o r  equivalently,  a s  t h e  sheath expands t o  envelope t h e  probe a s  t h e  
surface  voltage of t h e  panel i s  increased).  Af ter  some experimentation, a 
s a t i s f a c t o r y  opera t ional  technique was developed f o r  recording t h i s  infor-  
mation. A s e r i e s  of l o g  I vs. voltage curves were recorded f o r  e lec t ron 
co l l ec t ion  from t h e  zero current  voltage up t o  +lo0 v o l t s ,  a s  surface  voltage 
on t h e  panel was increased i n  s t eps  from zero u n t i l  t h e  probe ( a t  a p a r 5 c u l a r  
loca t ion)  was deep i n s i d e  t h e  paneli s sheath. A representa t ive  s e t  of curves 

6 is shotm i n  fig. 5. The undisturbed plasma at t h i s  point  was about 10 /cc with 
an elec t ron t e n p e r a t w e  (T,) s l i g h t l y  less than 1 e V  a s  deduced from t h e  i n i -  
t i a l  curve recorded with 0 V on t h e  panel. The l i n e a r  increa  e i n  current  from 
(thermal current  densi ty)  about 1x10-5 amp at +6 V t o  9 . 5 x 1 d  amp a t  +lo0 V is 
consis tent  wi%h normal o r b i t  l imi ted  e lec t ron  co l l ec t ion  i n  such a plasma. 

A s  voltage i s  applied t o  t h e  panel,  no e f f e c t  is seen at t h e  probe 
loca t ion  ( s t i l l  outs ide  t h e  growing panel sheath)  util t h e  applied voltage 
(v, ) reaches -800V, when a s l i g h t  displacement of  t h e  curve a t  higher probe 
voltages is  first detectable.  Increasing Vop by lOOv t o  -900v causes a 
c l e a r l y  n o t i c e ~ b l e  reduction i n  probe current  a t  +100v b ias ,  more than 
resu l t ed  from t h e  previous 800 v o i t  change. There is as y e t  no change below 
t h e  l i n e a r  port ion of t h e  curve. We i n t e r p r e t  t h i s  HS indica t ing t h e  probe 
is s t i l l  ( j u s t )  outs ide  t h e  panel 's  sheath boundary but  near enout, vh f o r  the 
pr abe's expandl ng e f f e c t i v e  radius o f  e lec t ron  c o l l e c t  icn (about 5 inches f o r  
a !i inch ?robe a t  +100v) t o  pr t r t ia l ly  contact  t h e  t-egion of sheath disturbed 
ambient c l ec t ron  currents .  ( A p a r t i a l  "shadowing" of t h e  probe locat ion 
by t h c  e;t9owing piasma absorbing sheath may a l s o  be expected, p w t i c u l n r l y  
when t h e  panel is located  between t h e  probe ttnd t h e  plnenm s o u w e . )  'She 
sheath h.as probably j u s t  passed t h e  locatioll  of t h e  ?robe whrn -1,000~ is 
applied t.o the  pnnel, the c u b r e n t  ~ t . ~ * o - c r o ~ ~ i n y :  vo1tnt:c hrcs  sh i f t ed .  As tlic 
panel voltage i s  increased fur ther ,  niovin,: t h e  loctttion of' t h e  shtvtth edgp 
fu r the r  beyond. t h e  probe loca t  iot , cvcn greater posi t  ivc voltages :Lrr* rcb- 
quired on t h e  pr-obc beftlrcr i t s  e lec t ron  nttr:tctirlg f i e l d  i s  stnmr: ctiough t o 
reach beyond ';he elec t ron drplcted uhcnth \?crundnr'y t o  an undi '; t.ur\?td pl:rsm:\ 
region cnntnining clectrntr:; which i t  can t h e n  dl-ELW t(7 i t s  S U I ' J ' ~ ~ .  1Jho11 



panel voltaee has increased t o  -L500v, the  probe is so deep inside the  panel's 
ion sheath tha t  +100v on the probe i e  lablc to draw l e s s  than 0.1% of the  
electron current available outside the  heath (+70v is required t o  a t t r a c t  
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i 
ally measurable electrons a t  a l l  i n t o  t h i s  electron depleted region) . 

i 

A s e t  of curves similar i n  appearance i s  obtained f o r  posi t ive  (electron 
col lect inq)  sheaths. The causes arc probably qui te  f ferent,  since there  
a r e  electrons present t o  be collected ins ide  t h i s  sheath, The probe current 
zero crossing voltage w i l l  still s h i f t  t o  prog~nssively higher posit ive 
voltages as  t he  sheath i s  entered, stnce the pr0i.c. w i l l  repel electrons u n t i l  
it exceeds the loca l  (posi t ive)  po ten t ia l  ins ide t h e  sheath. The curreht 
collected w i l l  then be reduced due t o  t he  combined lower density and hieher 
energy of t he  available electrons,  and t h e i r  essen t ia l ly  unidirectional 
velocity dis t r ibut ion.  

Sheath Size 

The t e l t  r e su l t s  show a d i s t i nc t  l imi ta t ion  t o  sheath growth, as a func- 
t i on  of voltage and (ambielit plasma) cwrel l t  density. within pre  n t  li t s  of s' experimental e r ror ,  the  observed sheath thicknesses fol lov the  V3T3 * n1 de- 
pendence expected fo r  space charge l imited culr'rent flow with d (sheath thick- 
ness) t he  f r ee  Variable. Figure 7 shows the  applied voltage required a t  vari- 
ous plasma densi t ies  for  the  outer sheath surface t o  reach a LBngmulir probe 
(#23 i n  ~ * i g .  3) located 1 meter fron t h e  surface of t he  arrBy. The reference 
l i n e  i s  the  theore t ica l  thickness calculated fo r  a one-dimensionel planar 
geometry case (Appendix A) with an e f fec t ive  electron o r  ion "temperaturet' of 
1 eV. Notice t he  electron sheath (shown as (9) is  abaut  he same size as 
the ion colleckion sheaths (shown as  G ). 

Sheath Current Leakage vs. Voltage 

The resul tant  leakage current multiplication fac tor  was observed t o  
be much lower than observed on previous small scale  tests. Figure 8 shows 
current leakage from "SPS" t o  the  plasma observed from -10 t o  -3000 

6 vol t s  i n  four ambient plasma densi t ies  ranging from lo4  t o  10 per cubic 
centimeter. The observed r a t e  of increase i n  leakage currerit with voltage 
is  seen t o  increase as the resul t ing sheaths become large compared t o  pmel 
width, as expected from figure 2. The regions of sheath s ize  shown are  
rough estimates, based on the calculation i n  figure 20 normalized t o  an 
actual  measurement for  each data s e t .  

Ploating Potenti  a3 

Recd.ling the requirement t h a t  t o t a l  current flowing t o  an electrical . ly 
isolated >anel i n  s e r i e s  connected configuration be zero fo r  voltage equi- 
librium with the ambient plasma t o  ex i s t ,  w e  expect values of V- and V+ 
re la t ive  t o  the  plasma s h i f t  so t h a t  ( f ig .  9) 



*ere joi a d  Joe a re  t he  eabient ion and electron current densi t ies  across 
the  outer sheath boundaries, tind A- and A+ a r e  the effect ive surface areas 
of t he  negdtive and posit ive po ten t ia l  sheaths. We neelect current contri- 
butions from other sources such a s  ~econdarieb,  and t h e  area (k a few kT) 
im~urdiately arotmd the  V = 0 (tt.r.t. ~ p )  point along the panel. Far 
reasonably th in  sheaths, r e l a t i ve  t o  panel dimensions, we can W e  the 
app~oxirn&t ion 

A- 3 L(-) = v- - - -  
A+ L(+) v+ (2) 

*here I('-), L(+) a re  the  lengths of' the panel sections floating negative, 
posit ive with respect t o  plasma potential .  AV/AL along the panel i s  asswed 
constant. (we note the  assumption joi, Joe constant along the  sheaths does 
not require ji, Je constapt along the  panel. Current density along the 
panel should V W y  due t o  focusing e f fec t s ,  without affect ing our assumption$ 
SO long a s  t he  r e l a t i ve  geometric shapes of A- and A+ are  the  same. !his 
skould be t r u e  for  thermtll velocity dis t r ibut ions  and approximately va l id  
for ion streaming veloci t ies  oriented perpendicular t o  t h e  face of the  panel. 
For other orientations, .  more careful account must be made fo r  both the  
effective intercept  cross-section (A-) and effect ive reduction i n  joi due t o  
screening by both the  panel and the  posit ive (A+) sheath. 1 

I n  the case of thermal electron currents and directionrll streaming of 
ions with meen energjr 

Ei = l a $  2 i i .  

We can use (1-D calculation) 

Therefore 

For an A r +  plasma, GL = 270. Typical values for  electron temperature 
of l e v  and ion beam energy of 20 ev give 



We therefore expect the panel t o  f loa t  about 2.3% positive, the remainder 
(97.7% of L, Vop) negative Under these conditions. Representative current 
density and voltage vlrlues expected along an =ray are shown i n  f ig .  10(a). 

Con@arison with Observatidn 
(foxi flow perpendicrilar t o  panel fece) 

T h i s  wad *eri&ed experimentally. 2he 30 cm thruster  was operatetl frolh 
the tl l ird level  catwalk, aimed horizontal directXy into the face of he panel. 
Average pla8m densit$ along the panel is estimated t o  exceed 106/cm$, barred 
dn supply current of 21 mCi bt Vbt) = 2000 V compared t o  15 mA (a t  -2000 V) o b  
dented esr l ieP when protie measuremeiits indii?ated deneities decreasine f'rom 
1.lxlo6 at the  bottom t o  2.2r105 tat the top of the panel. We experimenti con- 
figuratibh was ser ies  connected (fioating) a s  dhom i u  fig.  4. Usixlg e pa l r  of  
e lec t r ica l ly  isoldted power supplied i n  ser ies ,  -mltages (V ) From 500 t 6  
5500 V were apglied t o  the pariel while monitoring the  v o l t s  at lead #0 using 
a Dm refereneed t o  lab gromd. (The plasma potential  was +5 - 10 \I refereaced 
t o  l ab  grorind.) As long as the panel floated more than 90% negative wl% ground, 
the  DVM a t  #b woiitd read -0.167 Pop l e s s  V+. Readings of V+ direct ly a t  lead 
110 were also recorded a t  Vo = -3 kV and -4 kV. Values observed u e  plotted 
i n  fig. Q. V+/Vop 6t 3-4 kq i s  2.6-2.31. Very nearly the expected value. 

The behavior of V a t  lead #8 indicates this is probably tnae at loner 
values Of Vo , bUt the hi& leakage currents cause a l o a d i ~ g  down of the  reeia- 
tin panel sgch tha t  AV/AL is no l o w e r  constant and a large fraction of the  
panel surface between #8 axid #I0 is i n  effect  l e f t  out of the c i rcui t  irt Vo 
500 - 1000 P. A t  these voltages the  ent i re  current eupglied at the ends 08th 
panel is carried part of the  length elitirely through tbe  plasma, leaving zero 
current i n  the  panel. Therefore bV/AL = 0 i n  this section, which f l ~ a t s  
s l ight ly  negative so a8 t o  repel (97%) of the e l e c t b a s  and drat? no net current 
from the  plasma. This is i l lus t ra ted  i n  fig. 10(b). 

Total current supplied t o  the panel was recorded for  each voltage. This  
allowed calculation of current leakage estimetes and the  nsul tar i t  poker l o s t  
t o  the plasma as a xunction of Vop. The calculated current leakage values 
were obtained under assumptions which may be i n  error *25%. These errors  
cancel i n  further calculation of t o t a l  power los t .  Results are shown in 
Table 1. The 56 watts estimated l o s t  i n  driving plasma currents a t  Vop 
4,000V is sigr.ificant, but well under the roughly 1 kilowatt avctilable from 
a solar array t h i s  size. 

Thie rseul t  is plotted i r i  f ig .  12 for comparison with the ear l ie r  
estimates i n  ref .  3 using constant leakage per  un i t  area and reducing the 



t o t a l  by 90% t o  a l l ~ w  fo r  relative insulalor/conduct;or areas. The "error 
bars" cahow o w  estimated uncert;alnty i n  plasma conditions and p o s s l b h  
reduction i n  t o t a l  currents due to 90% fneulatfon (our measurements were f a r  
a 1005 conductive surface) .  

Arcing to Plasma 

Arcing, defiued here a s  any sharp and t ransient  increase i n  current 
drain t o  the  plasma was frequently observed. Most measurements of current 
l o s s  vs. voltage were l imited t o  voltages l e s s  than 2-3 KV bec3use arc: 
induced t rans ien ts  became so severe tha t  u s e f d  meter readings could not be 

( made. Although some arcs  were "stnall" and did not a f f ec t  the  r e s t  of t he  
panel except for small pulses i n  t he  current meter, many resul ted in complete 
discharge of the  panel voltage, which required 1-5 seconds t o  rebuild.  This 
was v i s ib l e  both i n  t h e  collapse of the  sheaths t o  much smaller dimensions 
(observed both i n  t h e  L L V  dark image., see f i g .  13, and with any Lmgmuir 
probe located ins ide  the  sheath, see  f ig .  1 4 )  and a s  a voltage drop indicated 
by the  power supply meter. The time and e l e c t r i c a l  power required t o  res tore  
t he  sheath could be appreciable (estimate ty-pically 2 seconds and 50 joules) .  
This collapse of t he  en t i r e  sheath was observed, by LLTV, t o  occur even i n  
cases where the  discharge was observed t o  come from an insulator  surface lo- 
cated 1-2 meters out i n  the  sheath and having no contact with t he  conductive 
panel surface o t k r  than the  plasma ( f ig .  15). 

The a rcs  were observed t o  occur a t  posi t ive  voltages over +400~ ,  and 
negative voltages over -1,000V. There appears t o  be no par t icu la r  dependence 
between plasma density and minimum voltage for  t he  onset of arcing. A t  a w  
given density, arcing would occur a t  -1KV on some days and then not occur a t  
v o l t ~ g e s  up t o  -3 KV t he  next day. The appearance of t h e  arcs ,  a s  observed 
by LLTV, varied greatly.  However, a l c s  occurring a t  negative voltage tended 
t o  appeat. a s  point discharges, even when occurring from an extensive f l a t  sur- 
face. Po'sitive voltage a rcs  more of ten would involve most o r  a l l  of a large 
surface i n  a sudden ( l e s s  than 1/30 sec)  bright discharge. 

A very in te res t ing  finding is  tha t  every arc  observed by the  LLTV system 
t o  date occurred frcm an insulator  surface, We have not ye t  observed a s ingle  
instance of a v i s ib l e  arc  occurring from the  conductive surface area  of the  
panel. It would appear t h a t  t he  arcs  a r e  t h ?  r e su l t  of a l oca l  charge build- 
up due t o  sheath currents impinging on n nol?conducto;' i n  t h e i r  path i n  a 
process s imilar  t o  t h a t  occurring with sake:llites i n  CEO during substorms. 
Most of t h e  resu l t ing  current drain from th;? panel biasing power supplies 
must be due t o  l a rge  sca le  currents within +;he collapsing (space charge) 
sheath, not d i rec t ly  due t o  t he  small area of v i s ib l e  f lash region currents. 

Surface Glow: Ton Focusing 

A very noticeable e f fec t  occurs a t  negative panel voltages, where a 
d i s t i nc t  surface glow pa t te rn  i s  obsevved by LLTV t o  form along the  face of 
the  panel (see f ig .  16). This pattern has a shape suggestive of a flow along 
the panel and was or ig ina l l~ r  .i;huiiaht t o  be due to  serondary electrons cascading 



The present r e su l t s  indicate  t h a t  equilibrium high voltage leakage 
currents t o  the  plasma should be much l e s s  than some e a r l i e r  predictions had 
indicated, par t i cu la r ly  fo r  very large so la r  arrays.  The power loss ,  and 
other effects ,  due t o  the  observed arcing phenomena threatens t o  be much more 
s ignif icant  unless adequate means a r e  developed t o  understand and control  it. 
More deta i led and complete study of the  large scale  high voltage sheaths 
ernund a so la r  arr4.v appears basic t o  an adequate treatment of both problems. 
While the dense  plasm^ present i n  LEO w i l l  bleed of f  arqy natural  clmrge build- 
up from passive surfaces, t h e  plasma sheath formed around any high voltage 
surface envelopes 811 surrounding s t ruc ture  i n  an environment very s imilar  
t o  t h a t  a t  GEO during intense storm conditions. Within the  sheath, strong 
flows of t he  collected species of charge a r e  accelerated t o  ki lovol t  energies 
while mom charge of t h e  opposlte s ign i s  excluded from the  sheath area and 
cannot ac t  t o  bleed off areas of surface charge build-up and prevent 
eventual arcing. 

,Si 
along the  surface voltage gradient. This was ruled out Vhen the  voltage gradi- ,d 
ents were found not neceosary fo r  fomhatlon of the  pattern.  The pat tern i s  ob- 
served t o  become b r i a t e r  and narrover as  panel Voltage increades ( f ig .  177, 
We now believe it i s  due t o  focusing o f  t he  incoming ions by t he  plasma sheath, - . -..--..- 
which ac t s  a s  a large cyl indr icai  lens  i n  front of the  panel. As t h e  s i z e  and 
curvature of the sheath po ten t ia l  surfaces increme d t h  voltage, t he  degree of 
focueing a l so  increases as  i l l ud t r a t ed  i n  f ig .  18. This focusing effect  Is 
predent a t  both ends of the  panel when opeeated i n  constant high volta$e con- 
2iguration (see figs. 16 and 171 but vanishes a t  t he  grounded end ( f ig .  19) f o r  

This i s  probably due t o  the  sheath s i z e  there  f l a t -  a aer ies  connected -panel. 
tening out t o  zero. 

CONCLUSIONS 

We conclude t ha t  estimates based on calculations of space charge l imited 
sheath dimensions provide a promising working model fo r  calculating design 
estimates of high voltage plasma current leakage from large so la r  arrays and 
similar objects.  I t  would appear necessary t h a t  a l l  such estimates be 
ver i f ied by a careful ly  developed sequence of plasma-vacuum t e s t s  progressing 
from small l ab  chambers t o  fu l l  scale  f l i g h t  t e s t s ,  due t o  l a rge  differences 
i n  applicable scal ing re la t ions  which a r e  observed t o  r e su l t  from subt le  
differences i n  assumed conditions. Large scale  tests of the  so r t  described 
here, together with adequate math models t o  provide continuity between 
dif ferent  design o r  t e s t  de t a i l s ,  w i l l  be an important element i n  any develop- 
ment t e s t  sequence fo r  systems involving large slurfaces o r  high voltages. 

The present r e su l t s  a r e  preliminary, based on exploratory measurements 
intended t o  determine the  feas ib i ld ty  of t h i s  type of investigation and order 
of magnitude of the  experimental quant i t ies  t o  be measured.. Detailed 
ver i f icat ion and extension of these r e s u l t s  is  the  first cbject ive  of our 
next s e r i e s  of t e s t s .  Development o f  math models t o  include the  space charge 
e f fec t s  i s  needed. Detailed cross-checking of t he  predictions of such models 
with actual  measurements within the  1-5 meter sheaths during t e s t s  i n  t he  
lafge chamber should be very useful t o  a i d  fur ther  development of both models 
and t e s t s .  



CALCUUTION OF $HEATH THICKNESS 

The s i z e  of the  sheaths is  expected t o  vary i n  such a manner t h a t  space 
charge l imited flow conditions prevail .  The calculation is somewhat di f fer-  
ent from the  usual case considered, 111 t h a t  t he  current density avai lable  
across the  v i r t u a l  "electrode" formed by t h e  outer sheath surface is 
considered as  fixed (by the  ambient thermal motion o r  o r b i t a l  velocity 
current flow across t h a t  boundary) while t he  separation of t he  two "electrode" 
surfaces ( the  outer sheath boundary and t h e  panel face)  is  f ree ly  variable.  
For example, we calculate  the expected sheath thickness, d, f o r  the  case of 
planar geometry by equating the  random t h e r m l  current of the  a t t r ac t ed  
pa r t i c l e  species (electron o r  ion)  

o r  f o r  directed (1-D) flow 

t o  t h e  Langpuir-Child Law expression f o r  planar diode space charge l imited 
current 

Therefore, defining kT = E (expressed i n  electron vo l t s )  and k* t o  incorporate 
the  appropriate veloci ty  d i s t r ibu t ion  function i n  a general expression f o r  

We obtain 

Where = 1.0 fpr 1D flow and. J;;" = .63 for  Maxwell d is t r ibut ion.  In  most 
cases 'of i n t e r e s t ,  k* is  probably close t~ I. Even the  thermal electrons 
must have t h e i r  velocity d i s t r ibu t ion  a l te red  s ign i f ican t ly  from Maxwellian 
near the  sheath boundary, as there  ex i s t s  flow i n  hut none out. 

Notice t h a t  t he  pa r t i c l e  mass (m) does not appear i n  (3) .  For a given plasma 
density (s ingly ionized),  the  electron sheath w i l l  be t h e  same s i ze  a s  t he  
opposite po la r i ty  ion sheath i f  t h e i r  temperatures are the  same. The current 



densi t ies  acrose t h e  sheath outer  boundaries w i l l  be higher f o r  electrcne i n  
the  r a t i o  

For the  case of streaming flow ve loc i t ies  greater  then mean thermal veloci ty  
(usually the  case for  ions i n  low ear th  o r b i t )  it i s  necessary t o  uee a 
carefully selected equivalent temperature, o r  the  d i rec t  expression 

where w> is the  average velocity ( i. e. , orb i t a l  velocity o r  velocity of 
th rus te r  beam energy) and 0 i s  the angle between flow vectbr and sheath 
normal. 

The resu l t ing  relatiorr between plasma density and voltage required t o  
cause a given sheath thickness d i s  plot ted i n  f ig .  20 for  several  values of 
d. The calculation should be reasonably good f o r  d CC l meter. For d = 1 
meter and d >> 1 meter, s i a i l e r  expressions can be obtained fo r  cyl indr ical  
and spherical  geometry respectively, using 

cyl indr ical  

spherical  

where a2 and fi2 a re  quant i t ies  tabulated by Langmuir (ref.. 5 and 6). For 
thick sheaths w e  use an approximation from ref .  3: 

where r = outel radius of sheath, a = probe radius. Therefore (3) becomes 
0 

The r e su l t  fo r  d = 3rn (with a = h, E 1e.r) i s  a l s o  plot ted on Pig. 
20 for comparison with t h e  planar calculation a t  lil f t .  The actual,  roughly 
cyl indr ical  geometry, value should l i e  somewhere between these extreEes. 
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TABLE I. - POWER LOSS WITH 
OPERATIRG VOLTAGE 

[series-connected, +m2 gloating array; 
no insulation; > 10 /ad. 1 

i V  I 
! op supply 'leakage Power ~ e a k a c l  - 
: 500 5 ma 4 ma 1.3 watts 
; 10" 12 7.5 5 
! 1500 15 7 7 

I 
lo= - 

- 
lo' - 

g 103- 
E 
P;I 
0 a 
a 
$ : I$-  

f 
0 

?O - 

Fig. 1 - Plasma power losses of biased, 15-kilowatt 
solar array with 90% insulating surface. 
(From ref. 3 - 1  



CURRENT VS VOLTAGE VS alL 
a1L - RATIO OF PUSMA SHEAW THICKNESS TO OBJECT SIZE 

Figc 2b - Lis i ta t ion  o f  current m l t i ~ l i c a t i o n  - -  - 

Fig. 2a - Effect  ~f sheath s ize rc la t i ve  to  ob:ect size r a t i o  vs voltage ex~ected  f o r  rolleet;ng objects 
on plasma current collection. o f  increasing size, assaming sheath size limited. 
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Fig. 3 - High voltage "array" t e s t  lay-out i n  Chamber A 
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Fig. 4 - Simulated h igh voltage array e l e c t r i c a l  conf igurat ions (SPL-1; 1977). 
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Fig.  5 - LLSV image of HV plasma sheath. 
"ZPS" edge-on, series connected. 

0 +20 +40 +60 +80 +lOOv 
Fig.  6 PROBE B I A S  VOLTAGE vs L o g  I 

Change with V as sheath expands past probe. 
0 P 



SHEATH THICKNESS: d = 1 METER 

Fig. 7 - Applied voltage required f o r  outer  sheath surface t o  reach Langmuir 
probe located 1 meter from surfcce o f  

WW*CI POttNlIAL IVOLIII - EOW~TANI nu 

Fig .  8 - Current leakage from SPS t o  plasma. 



Fig. 9 - Preliminary model o f  expected space charge 11 m i  ted sheath 
development around a 10 k solar array i n  LEO. Voltage, 
w f  t h  respect t o  plasma potential ,  along the array must 
sh i f t  so as t o  balance ion current against electrons. 

Fig. 10 - Effect o f  In ternal  loading of series connected'(f loating) 
high voltage array due to  plasma leakage currents. 
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.P.,m1=. PANEL SERIES CONNECTED 

Fig. 11 - Equilibrium f loat ing potential of positive 

end o f  simulated high voltage solar array . 

la-'. 
100 1 m  t o m  lmm 

U W W D E  (KIUYEIEILf) 

Fig. 12 - Power loss due to plasma leakage curr- 
ents observed a t  + 4000V. from an uninsul- 
ated 1 x 10 metersimulated solar array, 
plotted fo r  comparison with estimated 
curves shown i n  f i g .  1. 



(13a) sheath before arc 
W 

( 1 3 ~ )  1/2 sec a f te r  arc 

Fig. 13 - LLTV sequence 
s 1 ow recovery 

(13b) 1/30 sec a f te r  arc 

(13d) 1 sec a f te r  w c  

showing sheath collapse an& 
fol lowing "arc" discharge. 

Fig.14 - Set o f  log  I vs V curves showing 
several arcs with sheath col 1 apse. 
Probe recorded value I ( V )  fo l lowing 
arc s h i f t s  from point  along " inside 
the sheath" curve t o  a value along 
or ig ina l  "outside the sheath" curve, 
then slowly returns t o  i t s  ore-arc 
I (V) cond i t i o~s .  



Fig.lSa - 
loca 
Edge 

Arc from mylar tdpc  5 l i i  t c f  loo i n s l ~ l a t e d  rod t o  p la s t i c  
t e d  (arrow) 1-2m i n  f l o u t  i b f  "sPs" (@-3000~)~ i n s i d e  ion shea 
-On view shows s i m u l  tanetlub u 11 apse of sheath, with no brigh 

brace, 
~ t h .  
lt glow. 

Pig. 156 - Arc from t p f  ir.11 I I ' I  I . -  t : I  v irr ,  I ,,,lint 5rn a 
wire, lrn behind "SITS" 1 9  I I I ~ ' ~  ( F  1 ; )  q q  , 1 1 1 ,  { O O O V ) ;  i ~ l s i i l ~ *  t i l i c k  elec 
sheath. Note gruat l y  1 . 1  I K I I ~  1 I I I . k . 1 1  I 1 1 1 1 1 1  : i t ~ ~ . ~ ~ ~ ~ ~ ~ J i ~ ~ ~  rcSgion, 

1 ong 
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Fig. 16 - Surface Glow (Ion ~ocusing) on face of "SPS" panel. Constant 1.0 kV. 

Fig. 17 - Surfncr Glow ( I o n  Focusing)  (,it t n c r  of "sPS" p ; m * l .  Constant 2.5kV. 
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Fig.  18 - Ion focuslng onto panel by c y l i n d r i c a l  lens e f f e c t  o f  space charge 
sheath. Model i s  q u a l i t a t i v e ,  t o  i l l u s t r a t e  r e l a t i v e  behavior t o  be 
expected as sheath expands (wi th  increased V,  o r  reduced densi ty) .  

F ig.  19 - Surface Glow ( I o n  Focusing) a t  grounded end o f  panel (sheath 
thickness f l a t t e n s  t o  zero as voltage decreases t o  ground). 
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