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As epace systems hecome more complex, they have demonstrated an
inereasing eensitivity ‘o the 6pace anvironment. Although the ehuttle will
not in genoral be in orbit long enough to suffer savere radiation exposure
nor normally experience. the "hog" particle fluxes responsible for
geosynchronous spacecraft charging, deleterious environmental effects are
enticipated st shuttle altitudes. The- high dansity of the plasma at
shuttle altitudes is, for example, likely to incresse greectly the
possibility of arcing and shorting of exposed high voltege surfaces. For
military missions ovar the poler caps and through the auroral zones, the
added hazards of high energy aeuroral Particle fluxes or solar flares witl
further increase the haezard to shuttle, its crew, an. its mission. The
purpose of this presentation ig to review the role that the aureral and
polar cap environment play in causing these intersctiong. A simple, though
comprehengive attempt at modelling the shuttle environment at 400 km will
be described thet can be used to evaluate the importance of the
interactions. The rasults of this eveluation are then used to define areas
where adequate environmental measurements will be necessary if a true
Bpacecraft interactions technology is to be developed for the shuttle.

INTRODUCTION

As the pace of Space activities increases with the advent of the
"shuttle ere", the concern of engineering and scientific communities over
possible edverse interactions between the space environment and spescecreft
syetems has grown proportionally. 1In perticular, with the desire for
large, high voltage etructures, cost, complexity, and gensitivity of
spacecraft have increased greatly. The necessity for Long (10 years or
more) mission duretions in order to recoup expencive development custs has
further intensified the concern for “endurable" op "survivable" spacecraft.
Although much experience has been gained in thess matters over the last 25
years, the fact is that there are still major gaps in our knowledge of how

eyétems affect and are affectéd by the environment. After the
geosynchronous environment, which has been studied extensively ovar the
lest decade, the earth's polar and euroral environments at shuttle
altitudes pose the greetest risks to future 6pace systems. The objective
af this etudy is to review the capabilities that currently exist to predict
the shuttle auroral/polar environments and to compare these predictions

*This pepar presents the results of one phase of research cerried out et
the Jet Propulsion Leboratory, Californie Institute af Technology, under
contract NAS 7-918, Sponsored by the Netional Aeronautics and Space
Administration and by the Air Force Geophysics Laboratory.
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with aimilar ones for the equatorial environment. In arder to Limit the
analyeis, thie etudy will anly consider the anvironment at 400 km ovaer the
northern hamisphere during winter. Evan with thie (imitation, the amount
of information covared i atill enormous, As @ raesult, we have furthar
rastrictad tho etudy to parinds of high solar (sunspot number, Ry af 100)
and goomngnaetic activity (goomagnetic activity Laval, Kp, of ﬁnl. Tha
amphepie will not be en the accuracy, buf rather an the modele necesenry to
adoquatoly specify the chuttlo enviranment. Lietings of the actual modols,
data for othor Locations and conditions, and raeferoncos to modolo not
coveraed in the report ean bo obtained directly fram tha author.

Tho secondary objoct of tho etudy i6 to dotermino the relative
impartance and eonsitivity of differant typos of onviroamontal intoractions
a6 a function of the environment. To occomplish this, whare possible, the
modellod environments have been usod to prodict tho Llevel of the
eanticipatod intoraction. Although this has proven to be a valuable output
from the study, the interactions wodets employod wore by necessity quite
simplistic so that the absoclute Lovels predicted are not intonded to be
accurate. HRather, the results demonstrate potentiel paremeter
sensitivities and areas where thoenvironmental modols need tc be improved.

The report is organized into 4 sectinns dependent on tho environment
being considered. In this study, only the netural otmosphere, geomagnetic
field, ionosphers, and surcral environment at shuttle altitudes were
considered. Models of the cosmic ray flux, radiation level, solar
electromagnetic flux, ambient electric field, gravity field, and debris
anvironment will be presented at a later time. For sach of the
environments studied, an interaction is modelled. For the neutral
environment, the drag is computed. For the geomagnetic field, the induced
viB electric field is estimated. For the iunosphere and auroral
environments, the vehicle to speca potential is e¢stimated. The results of
this analysie demonstrate, as would he anticipated, that there are indeed
major differences in the environment between the equatorial and
auroral/polar environments that are roflected in the interactions.

THE NEUTRAL ATMOSPHERE

By far the msjor env'ronmental factor at shuttle eltitudes is the
earth's ambient neutral atmosphere. Whethér it be through drag or the
reacently discovered interactions with atomic oxygen, the effect of the
reutral atmosphere (predominately the neutral atomic oxygen) on spacecraft
dynamics and surfaces greatly exceeds any of the other effects that will be
considered in this report. Currently there exist a number of modele of the
earth's neutral atmocphere. These models are based on differing raties cf
deta and theory. The 3 main sources of data at shuttle altitudes have been
neutral mass spectromotsrs, eccelerometers, and orbital drag calculations.
Without going into detsil, most models ettempt to fit the observations with
some fo m of an algorithm thet includes the exponentiai fall off of the
neutral density, the effects of increosing sclar ectivity (particularly in
the ultraviotlet), the local time, and geomagnetic sctivity. Of these, tha
large variations associatéd with increesing gecmagnetic activity (and
subsequent keating of the atmusphere) have eluded adequate modelling by
this fitting process. Unfortunately, it is clear from many sources (see,
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for exemple, ref. 1) that these variations, particularly in density, over
the euroral zone often dominate the reutral_envirenment and. that to date no
adequate method of including thase effecte in- the models has been devised.
(come recent. vary sophistieated theoretical computer mcdels do hold
promiss, however).

With- the praeceding caveat in mind, 2 modéls were used to compute the
variations in drag due to the neutrel atmosphere et 400 km. These are the
Jacchie 1972 model (ref. 2) and the MSIS model (refs. 3 and 4). These
models are readily available in computer format and heve been well
doveloped over the last decade. For the purposes of this study, the
Jacchia 1972 model results are presented (the MSIS model results deviate by
about 20% from the Jacchie values on the average——e relatively smoll value
given the much larger average uncertainties in the medels themselves).
Figure 1 illustrates the type of output that can be cbtained. As.stated
earlier, the results are for the northern hemisphere (the reader is Llooking
down on the north pole with the projection in terms of equal latitude
intervels) and 400 km.  The geomagnetic conditions for the model are for
F10.7= 22 x 1072% w-m2-4z"1 (the solar radio flux at 10.7 cm; belisved. te
be. proportional to the extreme ultraviolet flux) and Kp=6,. These give an
exospheric temperature of ebout 1500 2K,

Seversl features are apparent in the figure. First is the two-fold
increase in density frem midnight to noon. Further, there is the.
pronounced shift by 2 hours of the peak in the density and tenperature
maxime eway from Local noon. This well know phenomene results from the
rotation of the-earth and ceuses the peak in atmospheric heeting to occur
after Local noon. The figure shows no clear feature associated with the.
euroral zone. This is directly due to the averaging techniques used in
deriving models of this type which smooth out the density waves actually
ob -erved over the auroral zone. Even so, the model results ere useful in
estimating the levels of atmospheric drag and, when the processes are
better known, the Levels of shuttle "glow" and surface degradstion.

The majur effects of the neutral atmosphere at 400 km result from the
impact of neutral particles on spacecraft surfeces. This causes drag end
surface damege. The stendard expreesion for the drag force is:

Fldrag) = 1/2 pv2 CD A =
= ~{300 - 5000) dynes (1)

where: 15
10~ g/cn® at 400 km

drag coefficient = 2.2 - 4.0
cross_;sectional area of spacecraft
~50 me éFpontell for shuttte

~400 n“(Base) far shuttle
epacecraft velocity

7.6 kn/s

p
(1)
A

ronon

ouonon

Cruparing these values with Figure 1, it is evident that uncertainties in
the orientation of the shuttle and lack of knowledge in the drag
coefficient are equal to or greater thaen varietions in the neutral
environment at these altitudes. Given, however, the very real uncertainty
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in the effects of suroral heating, it is aleo epparent that these
veriations, if they are greater than.e_factor of 10 (which they can bal,

will ba the major contributor to uncertainties —in neutral dr:‘ag_uw”~

calculations.

MAGNETIC FIELD -

Aside from the gravitetional ficld of the earth, the geomagnetic field
at shuttie altitudes is the most accurately known. It can be crudoly
model led in terms gf‘ 8 tilted (~11° from geographic north) magnetic dipole
of magnitude 8x1025 - G-cmS, Numerous accurate. models of this field exist.
Here we have used th: POGO model (refs. 5 and 6] as it is the basis of the
International Reference lonosphere (IRI) model employed. in the next
section. Thie model is a straight forward axpansicn of fits to the earth's
magnetic field in terme of spherical harmonics. The total magnetic fisld
magnitude at 400 km according to this model is presented in Fig:+>» 2. The
surface field is seen to vary from a minimum of 0.25 G near the gyuator to
0.5 G over the polar caps. The existence of 2 peaks in the magni tude is
reael and reflects the true complexity of the magnetic field in the
auroral/polar cap regions (note: if vector componente had been included in
this figure, it would have been obvious that the meximum et 270° east
longitude ie the true "dip" magnetic polel. Geomagnetic storm variations
are typically less that .01 G so that even during e severe geomagnetic
storm, magnetic fluctuetions would be smolt compered.to the average field—-
a merked contrast with the atmospheric and ionoepheric environments! Even
so, the great complexity of the magnetic field over the poles makes it
difficult to use megnetic guidance systems in these regions—a fact long
known te navigators.

Besides magnetic torques (which are very system. dependent), the

earth's magnetic field can induce an electric field in e large body by the
vxB effect:

E=0.1 (vxB) Vm = 0.3 W/nm (a2)
where:
v.= spacecraft velocty =
= 7.6 kn/s

0.3 6

Since the shuttie is roughly 1S m x 24 m x 33m, potentials of 10 V could be
inducad by this effect. As syctems grew to km or Large diménsions, the
induced fields will grow accordingly.

In Figure 2, the induced electric field for e véhicle of ~90°
inclination hes been calcutated. Aé would be anticipated, the largest
electric fields are sseii over the poler caps. The embient environnient can
also produce strong electric fields in the auroral/polar regions. Alﬁhough
not shown here, these fields cen reach velues of nearly 100 mV/m (see ref.
7)--e sizeble fraction of the induced field. These fields are also
comperebie to the fields necessary to deflect charged particles in this
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environment as the particles have ambient energies of typically 0.1 eV (ram
enargies for the fong Llike oxygen. can. reach soveral eV, however} and thus
must be taken—into account whon studying ionaspheric fluxes.

IONOSPHERE

Given. the. impertance of the ionosphers to redio and radar propagation,
it is-surprising to find.that relatively few models are aveilable for the
fonosphere. Less surprieing is the fact that most of these models only
predict.electron densitiese-~the most readily measuresble quantity by ground
means and the moét important to radio propagation. The principle
ionospheric model available based on ebservations is the International
Reference Ionosphere (ref. B). This is the only readily aeveflaeble computer
model that gives the electron and ion composition and temperature as a
function of Longitude, latitude, altitude (65 to 1000 km), solar activity
(by means of the sunspot number, R], and time (year and Local). Although
the model is obviously limited (it is confined to R values of 100 or less.
whereas R values of 200 op greater may occur during solar meximum), it
nonethetess is the "best" available comprehensive model of the ionosphere.

In Figures 3 and 4, for the northern hemisphere, are presented several
exanples of the output from the IRI model. Figure 3 presents the electron .
number density end temperature at 400 km for R=100 in December. Unlike the
neutral temperature, the electron temperature increases by a facter of 2 in
going from the eguator to the pole. Like the neutral density, however, the
peak inwthe.electronmdenSity again_is shifted by about 2 hours from Llocal
roon.

At 400 km, the icnosphere, primarily because of the corresponding high
level of neutral oxygen, is dominated by oxygen ions (45% near Local.
midnight and below 30 Latitude to 97% over the polel. Valuee for oxygen
are preeented in Figure 4. The temperature is assumed to be the same for
8LL ion species in this model (i.e., for 0%, H*, He, 05, and NO*) and can
not for physical reasons ever exceed the electron temperature.
Unfortunetely, at 400 km for R=100 or larger, the IRI model will
accasionally predict fon temperatures far in excess of the electron
temperature.. This reflects the fact that the model is based on a Llimited
éet o data (R<100) snd needs improvement. Theoretical medels axist that
avoid thie problem but these models are still too cumbersome to be usable. .. . .
on all but the largest computers.

In Figure 5, using a simple 1-dimensional, "thin sheath" ram model for
ion collection (described in ref. 9), potentiale for the case of no
secondary emission and no photoetectron current were celculated baesed on
Figures 3 and 4. The spacecraft to space potential varied from -0.2 V at
the equator to -0.7 V at the pole--in rough agreement with ocbservations
(ref. 8), Thus, based on the IRI model environmeént alone, spacecraft
charging should n~¢ be e concern (note: thé high plasme density will,
however, encourage plasme interacticns with exposed high potentiel suifaces
8s discussed eleewhére in this book).
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AURORAL. ENVIRONMENT

The most dremoatic changes in the carth's environmont at shuctle
altitudes ere brought ebout by goomagnétic substorme. Thase changes. ars
reflectod in visibie aurorel displays and in intenseparticte and field
variatione in thé suroral region at shuttle eltitudes. In this section, a
simple aurorel flux model baesed on date provided by the Air Force ——
Geophysics_Laboratory (courtesy M. Smiddy and D. Herdy; see papers by
Smiddy end Hardy, this volume) is presented in order to estimate these
effects. The data were provided.in the form of 7 sets of color contour
plots of the electron number flux and energy flux in intervals of Kp from O
to 6. The plots were crudely approximated by a simple analytic function in
geomagnetic locael time and latitude end the geomagnetic Kp index.
Although, the AFGL date were.for about 800 km, no attempt has been made to
correst for attitude in this model.

The crude model developed from the AFGL dates was used to. estimate the
auroral/potar cap electron temperature and number densitiss. Thesa results
for the northern winter hemisphere and a Kp of 6, are shown in Figure 6.
They imply that thegg is a peak in the density of the suroral electron flux
of about 1000 ¢m in the noon sector while the auroral electron
temperature is 1 keV in the post-midnight sector. Although the validity of
this crude result will need to be compared with the actual AFGL data when
they become availsble, the range of values should at Leest be indicetive of
the characteristics of the average suroral fluxes (comparisons with other
data sources bear this out).

The results.in_Figure 6 can be used in conjunction with the IRI data
at 400 km to estimate the expected variations in spacecraft potential in—
the auroral zone and over the polar caps (note: the auroral ion fluxes
should not contribute significantly to the ambient ion current o that
their exclusion should not seriously alter the results). When this
celculation was carried out, there was tittle or no change from the results
in Figure 5. This is not surprising as it is generally believed that the
average aurorel flux Levels seldom exceed the ambient ion and electron
ionospheric fluxes.

In order to estimate what suroral flux levels are in fact necessary to
bring sbout significent increases in the spacecraft potential in the
auroral/polar cep regions, the electron density and tempereture in Figure 6
ware increased by varying factors. Changes of a factor of 10 in either the
temperature or density had little effect on the potential. A factor of 10
in both the electron density and temperaturé did, however, bring about a
significent increese in the potential--raising it from & few tenths of a
volt negative to several thousands of volts in the early afternoon sector.
These results are illustrated in Figure 7. Such a Large increase in the
auroral flux may seen unrealistic but a caereful review of auroral date does
imply that occassionally intense fluxes 10 to 100 times that of the averege
flux may indeed occur over nerrow regions in the auroral zone (see, for
example, Burke, this conferencal.
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In cacrying out the potential enalycis, it- was found- that the detatils
of the assumed charging modol greatly effected the results. Specifically,
if @ 1-dimensional, thin shoath model was essumed, the auroral potentials
could reach -6000 V when thé ton.return current was aquated to the cold
ambient ion current.. If the ion réturn current wes assumed to be the rem-
current, as was done here; the potentiel was about -1200 V meximum (this is
probebly the more "reaslistic" assumption). If on the ather hénd-the ton
return current- in the charging model was assumed to be for the thick
sheath, orbit-lLimited- case such asé normally assumed at geosynchronous
orbit, the poténtiel was only -1 to -2 VI This sensitivity to the detaiis
of the amount of return current is to be expected given.the simplicity of
the charging model end its resolution will need to await the development of
more accurete charging models for the conditions et shuttle altitudes.

CONCLUSIONS

This paper haes brought together most of the elements needed to form &
complete. model of the ambient shuttle snvironment for the purpose of
studying spacecraft interactions. Emphasis has been on modelling the
interactions in the auroral/polar cap regions where it was demonstrated
that, although models of the average ambient environment {neutral
particles, fields, ionospheric particles, and suroral/polar cap fluxes) are
probably satisfactory for meny interaction study purposes, the intense
variations in the auroral zone are not adequately modeltled. These

variations sre known from in-situ observations to exist end toc result in
several orders of magnitude increase in the charged particle fluxes end

atmospheric heating which cen similarly alter the neutral compostion. It
ie only relatively recently thet lorg term statisticél studies and-examples
of extreme cases have become aveilable. It is to be anticipated that, in
the near future, models of the evironment will become increasingly
sophisticated and capable of being used in modelling effects such as
epacecraft charging much more accurtely then presented here. Even so, the
results presented should assist current interaction studies in better
ascessing avaerage Levels of effects in the auroral/potar regions and in
comparing equatoriel end euroral/polar environments. The process of
presenting the models has slso ctearly indicated where impravements need -to
be made in the existing models. This is particularly true in the case of
the auroral model due to the varying sensitivity of the principle
interaction to chenges in the embient environment (i.e., epacecraft
potential calculations).

P. McConnell, M. Harel, and J. Slavin of JPL assisted in the
collection and development of many of the models Listed in this report.

Any information on Listings may ha obtained through them or the author
directly.
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Figure 3. - Polar view of electron environment as in figure 1 for IRI modei.
Conditions are the same as in figure 1 with the additional constraint that

R=100.
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Figure 4, - Polar view of oxygen ion environment as in figure 1 for IRI model.
Conditions are the same as in figure 1 with the additional constraint that

R=100 .
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ondary or photoelectron currents.
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as in figure 5 except that the auroral density and temperature from figure 6
have both been multiplied by 10.
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