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ELECTRICFIELD EFFECTSON IONCURRENISIN SATELLITEHAKES* ._.

O. E. Parks and I._K_tz
S-CUBED

La Jolla, California 92038 ......

Small currentsassociatedwith satellitespin, dielectricconduction,or-.....................................
trace concentrationsof H+, can have a substantialeffecton the potential
of a satelliteand the particlecurrentsreachingits surface. The importance
of such small currentsat altitudesbelow about 300 km stems from the ex-
tremelysmall 0+ currentsimpingingon the wake-sideof the spacecraft._

Tilefocus of the presentstudy is the particlecurrenton the downstream
side of the AE-C satellite. Theoreticalestimatesbasedon a newly described I
constantof the motionof a particleindicatethat accountingfor small Iconcentrationsof HT removea major discrepancybetweencalculatedand
measuredcurrents.

• 1. INTRODUCTION

Many studies,both theoreticalancLexperimental,have been made of the
interactionbetweena satelliteand the near earth plasma (refs.1-11). The
presentstudy concernschargedparticlecurrenton the wake-sidesurfaceof a
spacecraftin the earth% ionosphere,where the vehicleis mesothermal;its
speed Vo exceedsthe thermalvelocityof plasma-ionsbut is much less than
the thermalvelocityof the ambientelectrons.

In our analysiscalculatedcurrentsare comparedwith those that have
been observedby Samir et al. (ref. 10) on the AtmosphereExplorerC (AE-C).
The AE-C experimentsare-we-TTsuitedto our purpose,since its rate of spin,
as well as the plasmadensities,constituentsand temperatureswere known.
Moreover,measurementswere conductedat night,thus avoidingcomplications
associatedwith active solar arrays.

Measuredsatellitevoltageswere in the range V - 9..I00,where the
electrontemperature0 is in electronvolts. These resultsexceeded
theoreticalestimatesbased on balancebetweenion and electroncurrenton .a
conductingsurfaceby a factor-2.0-2.5, Theoreticalsurfacepotentialswere
also substantiallyless than expectedfrom ion-O+ currentbalanceat each
point of a dielectricsurface. In a previouswork it was shown that ac-
countingfor eitherrotatingcurrentsof chargeembeddedin the dielectricor
small concentrationsof HT sufficeto bring theory and experimentintocon-
formance(ref. 12). The calculatedvoltagesreportedin Reference12 will be
used in the calculationsof currentgiven in Section3.

* This Work supportedby Air Force GeophysicsLaboratory,HanscomAir Force
Base, MA, under Cen,_actNo. F19628-82-C-0081.
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The reportedchargedparticledensitiesi_ the ambientplaSma
encounteredby AE_C are _n the range 10 -I0° cmJ, with equal,el.ectron
and ion temperatures0 ~ 0..IeV.,co_respondi.ngto ambientDebyelengths
_D _ 3 cm. The ionic componentsof the plasma are the singlycharged
speciesof atomicoxygen,0_, and atomichydrogenH+. Our primaryfocus
will be in the altituderegimebelow about 300 km where 0_ i-sthe dominant
ion in the ambientionosphereand in the far wake trailingthe.satellite. In
the highlyevacuatedwake regiOnnear the su_f_ceOf the satellite,however,
H+ may be the dominant--ion(ref....13).

., Particledensitiesand currents,especiallyin the rarefiedwake :
downstreamof the satellite,are the most difficultto determine. Indeedthe
questionof wake structureis the most intensivelystudiedaspectof
interactionsbetweena spacecraftand the ionosphere(refs.4-11). In the
quiescentenvironmentof the equatorialionosphere,where satellitescan
developpotentialsof severaltimes0, ion currentsto the satellitesurfaces

• facing upstreamare littleaffectedby electrican_ magneticfields and may be
calculatedin the neutralapproximation(ref. I), as if particlesmoved in

" straightlineswith constantspeed. The manner of estimating,currentto
;:_ surfaceelementson the wake-sideof a high Mach numbervehicleis much less
,_ : clear. One might suppose,for example_that electri.calforcesmay attract
_-_-: substantiallygreatercurrentsthan estimatedon the basis of straightline
_ orbits. In Section2, we will invokeconstantsof the motion in an axi_
.... symmetricpotentialfield to determinethat 0+'.... numberand currentdensities

!_ at the wake-sidepole of a non-emittingsphereat an altitudeof • few hund_ed
i=: kilometersare severalordersof magnitudeabove neutralapproximationden-
i_ sities. The wake-side0+ currentsremain small,however,relativeto H+

)_ currents,and calculationspresentedbelow show that electricfields s_ffice
to increasethe H_currents by__o_cdersof magnitudeto the observedJevel.

Two of the dynamicalconstantsused in.thecalculationare the energy
_ and the axial componentof angularmomentum;the thir_ is a less well known

constantof the motionwhich appliesfor potentialsof the form Vo(r) =
._ f(e)Ir2 where o is the polar angle and r the distancein a sphericalco-

ordinatesystem. It reducesto the total angularmomentum in the limitof
" sphericallysymmetricpotentials.

The generalphysicalassumptionsunderli_the model developedin the
subsequentsectionsof this paper ar_ that

I. The Rlasma is collisionlessdnd quiescent.

2. The geomagneticfield has a negligibleeffecton particlemotion in the
spacecraftsheath,

3, In the plasmarest frame,the unperturbedions have Maxwellianvelocity
distributionswith finite,equal temperatures.

4. Ions are neutralizedon impactwith a surface.

5. The spatialdependenceof its electrondensitydistributionis related
to the spacepotentialV, throughthe Boltzmannfactorexp(eVlO).t

• Discussionof furthersimplifyingapproximationsof a more special

_:,. characteroccursat the point in the text where they are introduced,
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_i,._ . The normalcomponentof ion currentdensityat a surfaceel_me_tIocate___; at rs on the body is given by

ii f "'" "j = -e v.n f(rs,V)d3v (I)
_! v.n<O

_, where n is the outward normal at r s. The distribution function f(r,v) at
!--_, the phase spacepoint _, _, satisfies,in general,the Vlasov-Poissonsystem
_,_., of equations.._or a perfe_tl_yabsorbingbody f satisfiesthe boundary

-:_ condition-f(_-s,V') = 0 for v.n'> O..

_ Calculationsof currentto a satellitesurfaceoften use the assumption
_, that ion currentsto the satelliteare given by the neutralapproximation,
,_ which neglectsthe influenceof electricfields. This assumptior_is quite
i=.: good at the front (upstream)surfacewhere ions reachingthe satellitehave...................................................
_:: energies(-5 eV for 0") substantiallylargerthan electricalpotential

_.i. energies. The situation is less clear on the wake-side where electric fieldsmay substantiallyenhanceparticleand currentdensitiesover the neutral

_!7 approximationvalues. In the followingparagraphs,this problemis addressed
!i,_ by focmul_tingboundson J(_s) and n(i_s),and applyingthese boundsfor an

_;. assumed,non-self-consistentmodel potential.

The normal currentdensityat a point ;_ on the surfacewhere the ';_._, potentialis V(rs) can be written (mi = e = I

_- _' "> _ 3 dv0 d _2o "_v_, J(ro) =/_o f(rs'Vo)Vo
;d_L"

-: n°
,. , (½V2 -> )) dvz d ->_"J:" =SP fo _- d-a_ (2)=:_ o (v) - V(rs
i_.- d

'_ Here vo = (v_,_o) _s the velocityof a par.t_clea.-s,
__" .^ = -_..i_=) (I > _ > 0), and _-= (v,_) the veloci_=ty._tr = =on
_-, the trajectorythat connectsto the phase sp_ace_po_int_(yo,rs). If

;e'

_;. id%/dal < 1 (3)...................

then

• _ = v dv d a , (4)

_ , that is, Jb is an upper bound on the normal ion current density at r s.
! ,,

: _ Similarlythe particledensitysatisfies

-> ] 112 _>_ l ' n < nb = _r_ lfo(V) I V2 _ V(rs ) v dv d a (5)
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_i_ The bounds establ.ished here require the inequality (3); tha_ iS, in terms of
__: inside-out trajectories, neighboring orl_its emanating from ro with a given

_ energy must d.i_erge more at r =- than st their poi.nt of origin.- ATthou§h the
. inequality(3) appearsto be.a-reasonableassumption-for attr-activepoten-

t! tial.s,the generalconditionsunderwh.ichit applieshave not been

;'_ establ_ishe(t.

For the followingconsiderations,we take a sphericalSatetl.itein the

I_'; potentialV(r,e)wher_er and e are sphericalpolar coordinateswith polar axis
' in the directionof _o" We considermodelpotentialsof the form

_:,,, v= -r-2f(e)* re(r) (6)

where Vo(r) is a sphericallysymmetricpotential. The asymptotic,far wake
potentialh_s in fact this formwith (ref. I)

!i Vo(r) = 0

L f(e) ~ M2 a2 cos-2eexp(-M2 tan2e) (7)

where a is the radiusof the satellite. For the discussionbelow the
-.,,'_ particularform of f(e) is arbitrary,however,and may be chosen to fit
_ potentialsnear the satellite.

_,_

_i._ The utilityof the potentialof the form in equation(6) is that a
_, particlemoving in it possessesthree constantsof motion. In add£tionto
'_- energy and the componentof angularmomentumabout the polar axis the quantity

_..S_

!:,_ L2
_. C=T-f(e) , (8)

_.:__,:. where L is the magnitudeof the angularmomentumabout r = O, is conserved
_._ along a par_icl_tr_ectory. This followsreadilyupon takingthe scalar
_,":- productof IZ= r x V-with both sides of the torqueequation(mi = e = 1)

__ = -r x VV (9)

_._ takingaccountof equation(6) for V. There are fewer constantsof motion

_i!!, than for V = V(r), since in the lattercase the directionof L as wel_ as its

magnitudeis constant. The dynamicalconstantC of equation(8) is a rigorous
constantfor potentialsof the form (6), and shouldnot be confusedwith the
invariantsused by Samir-andJew (ref.14) and criticizedby Laframboiseand

_. Whipple(ref. 15).

_i,_ The effectivepotentialfor radialmotionof a particleis now given by

_-_._,.

....,, = • (_o)I-._ Veff(r) Vo(r) +
i_-_'_i r
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With this Veff we can solve for the orbits an evaluate the boundson ion
current and particle densities at the satel]_;e surface, The orbit equations
are particularly tractab_ for the intere_ing case of parti.cles which, reach
the poles-o_ the sphere, especta13_ the wake-side-pole. For. thee particles
the axial.component of an_lar momentumis zero, the _bits are planar, a_
the solution of the-equations of mo_ion is reducible to quadratures.

Erom.

f(e O)
,, C + 2 + Vo(a) _ (11)Vo(r)-Vo

-½_ 'o_(_-.o_)-'(%)o½_';_ -'(') (_)
_- we obtain

':-:'! dr
_-_ + (13)___.i- - 1/2 .

)_ _ e 0 [Cll4T --f'(_'l'_)]----I...... a r[Er2 - C - r2Vo(r)] _

for.the final dizectione of a particlelaunchedfrom r = a, e --, in.the
' _irectio+n_o with speed vo. Here Uo is the cosineof the angle betwee_

vo and ro.

Considernow a positiveenergyparticlewith initialcoordinate
: eo = _. For attractivepotentials,the orbitswill appearas indicatedin

figure 1.

/=o=0-8 I/=ol>o

I_1=I-8=_r
=,l

r=o

8o=7r

Figure 1. Schematicdiagramof inside-outorbits startingon the spherer = a
at e0 = _.

?
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' The range Of e integration for calculating the boundsof equations (4) and
(5) is generated by variations of p_ between 0 anzL1. Here we have

=:_; assumedthat the particles-are not attracted_back to the surface,_ This affect
= however can only deer.ease the parti_le flux at. the point of interest, and

therefore does not influence the nature Of-equations (4)a_nd (5) as upper
•._ bounds.
<..

-_ TO proceed further, we now specialize to potentials of the form

Volr) = o

=:,_ f e V(_) • -- _ , g <__e < • (141

=0 O<e<g_. ,/ ; _

1='':_': " which approximatesthe surfacepotentialsgiven by Parks and Katz (ref. 12).
_'_' The final angleat r = = on the inside-outtrajectorycorrespondingto
,;_ _o = 0 is given by

..,A 1/2
_: 1 * (15)

_; and the limiting angle for the outside:in orbit is
3-

= = _.... e_ (16)
?!:. ,.

Whenthe velocitydistributionremote from the spacecraftis Maxwellian,Jb
and nb are given by

,_ 2+V
_ ,;_. V0

(17)

2 v2V0 +

'/ ,VT ,v(,,,),(,,o,1 o II2

, nb = --I-/_ oT_VV__ e +
o (18)

,_,, where

-!
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_! fiumerical, integration-f_}_ the case M = VolvT_._ 8._ lV(_) 1 ._ 16 V_............................................................_
;_:._ giv.es for 0* ions

Jb
..... o_-_.. 1.55_x 10"10

!(_ nb 10-11_' _= 2.64 x

_ii The last ratio is to be compared___y!ththedensityratio

-_::,_i, n__=6.22 x 10-16

:'T:i;_i_!i N° ii
__.:,_ for the case of zero electricfield. Thus, althoughthe effectof electric
•,,,_" field may be to yield densitiesseveralorders of magnitudelargerthan those

_t obtainedin the neutralapproximation,they remain extremelys_all in
.....!;- comparisonw_th ambiention densi.ties,amountingto abou.t1 m- for
_ _. NO ~ 10s4 m-a. By way of furthercontrast,the ion densityratio is
--'_ also small comparedwith the electrondensityratio

_-_'_;_- n
_;-, _e= e-15= 3.06 x 10-7 .
....._ NO

• .),

/:!. _!
_;__.- Let us now calculatethe effectof electricfieldson the densityof
_!:. hydrogenion currentstrikingthe wake side of the satelliteat e = _, The
_,_ reSultof this calculationis intendedto throw somelight upo_ the issue

_i,_ raisedby Samir and Fontheim(ref. 16) in their comparisonbetweenmeasured,, currentratios I(l_)II(gO°) and those calculatedfrom Parker'smodel (refs.
_," 17,18). Parker'smodel is based on solutionsof the Poissonequationin which

_-_:_ ion densitiesare determinedby particletrackingtechniques. Only one
_i_ speciesof ion is treated,however,and its mass is the mean mass of ions in
"_ the plasma. Samir and Fontheimcontendthat the two-to-three-orderof
.... _ magnitudediscrepancybetweenmeasuredand calculatedcurrentratiosmight be
_, removed(1) by properlytreatingthe separateionic componentsof the plasma,

or (2) by consideringthe non-steadynatureof the plasmaenvironment. The
resultsof our calculations,su_arized in Table 1 below, indicatethat proper

_' treatmentof the hydrogencomponentof the plasma sufficesto removethe
discrepancybetweentheory and experiment.

" Severalobservationsare in order. First,Table 1 shows that both the
: measuredratio r and the estimatedupper bound on the ratio exceed the ratio

estimatedfrom tlieneutralapproximatinn,which one ma_(reasonablyexpect to
l _ _ r _; be a lower bound on r. Second,the measurementat 160- shouldgive a somewhat
_ _ _ greaterratio than would be observedat _0°; the neutralapproximation
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Table I, Comparison of Measnred and G_lc_ated Current Ratio_(a)
;L

C_e (b'c) _ 3 5 6

NiH*)IN(O+)(d) 1._(-3) 1.07(-3) 1.40(-3) 4(-2)
-(el[J(IOO)IJ(J(90)JN._. 0,8(-6) 7.4(-6) _.B(-6) _.e(°4)

Jb(180)lJ(go)(_) 1.5(-2) 1.3(-2) 1.7(-_) 0.48

[J(IGO)lJ(gO)]_V' 1.49(-_) 2(-_) 5.0(-3) _2)

(a) Numbersin parenthesesgtvep_werof ]0 bywhic_adJacententriesare t
• multlp]ted.

(b) Caseidentificationis thesameas that tn Table2 of Reference|5.
(c_ C_e Its notconsideredbecausenovaluefor hydrogendensi_was

reportedin Ref. 10. Case4 is notconsideredbecauseof theorderof
themagnitudedifferencebetweeniondensitiesreported]n Tables2 a.d

: 3 of Reference10.
!_ (d) H_drogenionto oxygenion raHosare takenfromthe8imsmeasurements

givenin Table3 of R_ference10.
(el Theratio of H+ andO"currentsat 180"and90', respect_ely,

calculatedin theneutralapproximation.
:_ (f) _ + • .' The ratio of H and _ currents at lCO and gO , respectively, where
• Jb is the boundon H" current calculated from equation (17) using a
_ : VolVT(H) . 2.83.
-_ (9) The ratio-of me_ured currents atZ60" and 90".T L

__ determines that the former would be only about 20 percent greater than the
_0._ latter. Third, the measuredc,rr-ent is wel-I below the estimated upper bound
!_ in cases 5 and 6, slightl_ below it in case 2,. and slightly above it in case 3.

_ That the measurementsyield a value slightlyin excessof the estimated
i__ upper boundcould beattributed to the approximatenatureof the potential
_ used in the calculations,to the fact that the currentprobewas at a distance
i_:. of about0.5 Ro from the surface,to uncertaint;esin the in situ H+

density,or possiblyto other factors. We believeneverthelessthat the
resultsin Table I are a strong indicationthat accountingfor H+, while

i_- ignoringthe non-steadycharacterof the plasma,sufficesto remove the major
discrepanciesbetweenmeasuredand calculatedcurrents incidenton the wake

" sideof the AE-C satellite.

4. SUMMARY

'_ To determinethe effect of electricfields On the wake-sideion
currents,we have developedan expressionfor the upper bound on the current

L:I densitynormalto an elementof surface. To be a rigorousupper bound it-is
_* requiredthatthe JacobianId_Id_Ibe less than unity. Utilizingthe

boundingexpressionsit is shown for a non-self-consistentmodel potertial
that the particleand currentdensitiesof 0+ ions at e = e, though
substantiallyenhancedby electricfieldsover neutralapproximationvalues,
still constitutean effectthat is small in comparisonwith the effect of spin

for the case of AE-C. Finally,accountingfor the effectsof electricfields
on the smallconcentrationsof H+ in the ambientplasma appearsufficientto
removethe major discrepanciesbetweenmeasuredend calculatedcurrentson the
wake side of the satellite.

The effectof a magneticfield in the absenceof electricfieldscan
_, only be to reduceion currentsincidenton a surface,and thereforecannot

J_ accountfor the vehiclegroundpotentialsobservedon AE-C (ref. 12). The
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combined:effect of electron and magnetic fields is not considered in this
=' papcr_.
:

_, Fo_Lfferent ionospheric satellJtes in different environments, fo_.
,_ example, ia pola_ environments, the relative importance of the various

physical ef_fects may differ from that found, for AE..C in tJ_e conditions we
investigated. [bus f-orsatellitessubjectedto fluxes of energeticauroral

L electrons,field enhancementof wake-sidecollectioncOul_ he a substantial
" effect.
1
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