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An analytical mode) of the charging of a spacecraft emitting electron and
fon beams has been applied to the case of large spacecraft. In this model,
fonization occurs 1in. the sheath due to the return current. Charge neutraliza-
tion of spherical space charge flow is examined by solving analytical equations

numerically. Parametric studies of potential of large spacecraft are performed.

As in the case of small.spacecraft, the ions created in the sheath by the

returning current play a large role in determining spacecraft potenttal. .

INTRODUCTION

The potential difference created between spacecraft ground and- the ambient
plasma during the ejection of a beam of electrons from a sounding rocket pay-
toad. in the tonosphiere (ref. 1) has been found to be much less than had origi-
nally been theoretically predicted (ref. 2). To determine the reasons for
this 1imited potential difference, large-vacuum-chamber tests were conducted
in which electron.and 1on currents were ejected from a payload into a simulated
fonosphere.

As a plausible explanation to the observed current voltage behavior,
sheath fonization models_(refs. 3,4) for small spacecraft have been studied.
When an electron beam is emitted from a spacecraft, ambient electrons are
attracted by the charged spacecrait (ref. 5). They collide with the neutral
atmospheric molecules in their paths and may be energetic enough to ionize the
neutrals to form new electrons. and ions (ref. 6). These newly created charges
alter the space charge current arriving at the spacecraft. and shift the poten-
tial to a lower value. The beam electrons are assumed to be energetic enough
to leave the spacecraft completely and to play a negligible role in the ioniza-
tion. This mechanism is capable of explaining the nonmonotonic current-voltage
behavior observed.

In this paper, we apply the sheath 1onization model to large spacecraft
in the tonosphere. In particular, it is important to find out whether the
nonmonotonic current-voltage behavior during electron beam emisstons would
sti11 be present for large spacecraft. Detalls of the method are given and
followed by a discusstion of results.

253



SYMBOLS

electron charge
etectric fleld. . .
beam current
mass.of electron
mass of. fon .
density of ambient. electrons
density of iontzation 1ons
density of ionization electrons —  _
probability of fontzation —
- radtus of spacecraft
radial position._measured from center of spacecraft
radfal position used as- integration variable
radius of sheath measured from center of spacecraft
velocity of an elec’ron in sheath
thermal velocity of ambient electron
ﬂmkweep velocity
permittivity of space
mean free path of electron neutral.collision
space charge density
electric potential
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MATHEMATICAL FORMULATION

The method of approach used is to study an analytical “"plasma probe" model
(refs. 3,4,7,8), with space charge flow of electrons accelerating through the
sheath surrounding a spherical “"probe," which represents a spacecraft in an
fontzable plasma environment. Magnetic field effect 1s ignored in this model.

The beam 1s assumed to be energetic enough to leave the spacecraft com-
pletely and 1s not stopped. by its own space charge at all. As the beam elec-
trons leave, the spacecraft becomes charged oppositely. A polarization region
(sheath) 1s formed in the vicinity of the spacecraft. In our model, ions are
assumed to be depleted due to charge repulsion inside the sheath (fig. 1).

The depletion radius ro will be defined by the balance of the outgoing
beam current with the incoming ambient current. For a beam current Iy, the
depletion radius r, 41s determined by

Ip = 4"'8"eevth» (1)
where vip 1s the thermal veloctty and Ne s the number density of
ambient electrons. Some typical values of sheath radius as calculated by means
of equation (1) are shown in figure 2.
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The potential ¢ at any point inside the sheath is governed by
Poisson's equation:

20 = - B~ (2)

where p 1s the space charge density and ¢g 1s the permittivity of empty
space.

Spherical Symmetric System

To simplify the geometry, we assume spherical symmetry in the spacecraft
and sheath system. Equation (2) becomes simply a radial equation:

103 (.2er) e(r)
P2 (r ar) == € (3)

where the gradient of the potential ¢ gives the electric field E:
M —‘—E(r)

Taking into account the electron and jon pairs created as a result of ioniza-
tion, the charge density p at any point r in the sheath 1s given by the
sum of charge densities (fig. 3):

;) = e [n*(r) - n7(r) - ne(r}] 8.

where ng 1is the return current (primary) electron density and n* and
n- are the ionization ion and electron.densities, respectively, due to
return current electron collisions with neutrals.

The ionization electron.density n~(r) is due to all fonizations that

occur outward of r, and the density n*(r) of lons at r is due to all
jonizations that occur inward of r. Thus
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where

[?,%] L ARG Ingl V() (8)

Numerical-Method

To solve the system of equations (3) to (8), one divides the space of the
sheath into N. concentric shells and sets up- N. equations for the- N unknowns
¢y (fig. 4). 1In view of the complexity of the ionization terms in equations
(6) and (7), 1t 1s impossible to solve these equations exactly. Instead, one
seeks the approximate solutions that minimize a function F, the mean square
of f4, constructed from the radial Poisson equation (eq. (3)) for the 1th
cell, where 1 =1, ..., N.

2 _,.2 1. 1.2 : ‘
fi(El""'EN) = (r E)H1 (r E)1 2y [% p(El.....EN{}1Arnwwu“ww~(9)
where the electric field E (eq. (4)) 15 constructed in a finite difference
scheme:.

Ar‘(E1 + 2€ + (10)
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The numerical method used to solve equations (8) to (10) 1s the standard
Newton-Raphson method of tteration:
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A set of trial solutions is used to start in the Newton-Raphson tterattion
process, and a convergent set of solutions s sought for each set of 1nput
parameters such as beam current, ambient electron density, ambient electron
temperature, mean free path, and spacecraft radius.

RESULTS AND DISCUSSION

Figure 5 shows the computed results of spacecraft potential as a function
of electron beam current for various electron densities, electron temperatures,
and mean free paths. Thé nonmonotonic behavior of potential current curves.
shows up. At low currents, the potentfal increases with beam current. When
the current increases further, tonization occurs inside the sheath. The
potential then turns around .as the current of the electron beam increases.

The 1on and electron charges created by ifonization alter the behavior of
the space charge flow, originally governed by the single charged Potsson equa-

tion. The potential turns to a lower value and stays approximately constant
as current further increases.
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At this stage, the potential profile as a function of radial distance
shows locally £lat gradient. This is due to fons created inside the sheath
not heing able to move out quickly because of thelr heavy masses. If a local
fon charge buildup forms a potential hump,. lon motien vwould be two ways, and
the_theory would then break down..

To overcome this difficulty, a sweep velocity vg 1S added fo the lans,
tquation (1) bhecomes

r @-’tl] 0 gt
+ 1 r' \
ntiry = = f , (12)
R

J lze IQ‘,E):Q( rt ) llmﬂ + V§ }1/2

It 1s arqued that the motion of a spacecraft relative to iis plasma envi-
ronment can provide such a sweep velocity vg (eq. (12)). The value of
vg 1s of the order of spacecraft velocity and s an arbitrary input to the
computation. However, at a higher current, a potential hump again shows up,
and the computation falls. to converge. The technique breaks down. It is con-
jectured that two-way space charge flows should be accommodated when a poten-
ttal hump appears.

For increasing spacecraft radit, the nonmonotonic current-voltage behavior
st111 persists (fig. 6). However, increased spacecraft radius lowers the
maximum spacecraft potential induced by beam emission. Also, the amplitude of
the difference between the maximum potenttal and. the minimum (beyond the turn-
around) diminishes. Figure 7 shows a plot of the envelope of. majimum and
minimum potentials for various spacecraft radii.

For a given beam current Iy {eq. (1)), the sheath surface area remains
constant and 1s unaffected. by the increase in spacecraft radius. The sheath
thickness (defined as the sheath radius minus the spacecraft radius), however,
diminishes. As a result, a lower spacecraft potential 1s sufficient to attract
ambient electrons, through the sheath, for the compensation of electron beam
current leaving the spacecraft.

Beyond the turnaround point in a current-potential curve, the minimum
potential is limited by the minimum energy required to ionize a neutral mole-
cule in the atmosphere. Since such a minimum energy is generally of the order
of 20 eV (ref. 6), the mintmum potential in a current-potential curve 1s
expected to approach about 20 eV asymptotically, depending on the model of
jonization used. For the same reason, if the maximum potential induced by
beam emissions 1s below about 20 eV, no nonmonotonic behavior is expected.

Figure 7 shows the calculated envelopes of the maximum and minimum (beyond
turnaround) potentials for vartous spacecraft radit in-a given ambient environ-
ment. The amount of lonization becomes very small as the sheath potential
approaches the minimum 1onization potential. The amplitude of the potential
drop beyorid the turnaround also approaches the value of minimum 1onization
energy.

There 4s another critical beam current, which manifests itself for large

spacecraft, but not for small ones. This current is determined by equating
the sheath radius to the spacecraft radius. If the sheath radius is too small,
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the spacecraft will recetve enough ambient electrons to compensate beam emis-
stons without being charged up. The potential of the Spacecraft 1s that of
natural charging, in this case., Beyond this critical current, the heam emis-
ston s able to swing the spacecraft teo an oppasite potential and hence control
the charging of the-spacecraft, This phenomenon shows—up 1n the calculations
(fig. 6).

In the model studied, as the radius of 4 spacecraft increases, three
regimes of physical behavior can bhe fdentified. Fiqure 8 shows these reqimes
clearly. The potent1al~ver5u5=spacecraft~rad1us curve 1s relatively flat in
the smati-radius regime. This is the regime in which saturated fontzation
occurs (1.e., this s the regime beyond the minimum potential 1n g current-
voltage curve). The second regime 4s characterized by the presence of the
potential maximum, which is the main feature of nonmonotonic behavior. The
third regime occurs when the Spacecraft 1s so large that its radius exceeds
the sheath radius (measured from the spacecraft center) for a given current.
The beam loses 1ts control of the spacecraft potential and natura) charging
dominates.
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Figure 1. - Sheath formation during beam emission.
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Figure 2. -~ Parametric dependence of sheath size.
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Figure 5. - Relation between potential profile and I-V behavior.
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Figure 6. - Persistence of nonmonotonic I-V behavior.. Parametric conditions
are as in fig. 7.
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