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1. BACKGROUND

For the past séveral years, SRl has been involved in a laboratory investiga-
tibn of the behavior of materials under simulated spacecraft charging Conditions.
These tests require that 4« sample be installed in the vacuum charnbér, the chamber
pumped down, the test run, and a new sample installed with the minimal delay.

To carry out such a program, it has been necessary to have a rugged, reliable
electron/ion source available, A simple, novel technique has been developed for
generating a large-diameter, untform electron beam with appropriate current
density for spacecraft charging studies.

Our experimental work started using tliermdelectric sources. The following
difficuities were experienced:

(1) Contamination — thecathode becartie contaminated by products evelved
from the test sample. (Differential pumping was not used in our systém,)

{2) Beam uniformity ~achieving a large-diameter beam With uniform current
density proved difficult,

(3) Beam diameter = expanding the beam from a thermionic cathode to a
diameter of 8-10 iri. lh a distdancé of a toot was difficult.
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(4) Beam charactéristics depend on accelerating voltage ~ it was found that
with simplé lend arrangements, changing beam energy also changed bther beam
paraineters.

(58) Complex electrostatic lenseés required ~ progréssivély more complex
lenses were needed to achieve desired beam prbperties.

(6) Light from filament = in photoconductivity experiments, the light from the
filament cari alter material behavior.

Accordingly, it was decided that an alternate electron sourtce should be devised.

2. MULTIPACTOR BREAKDO®N

Past experience with f voltage-breakdown mechanisms in low-pressure sys~
tems indicated that a process was available with the promise of generating an
electron beam without the disadvantages of thermionic cathdde systems. As indi-
cated in Bigure 1, when an rf signal is applied to a pair. of parallél plate electrodes
and the ambient pressure is reduced monotonically, oné finds that the voltage
required td produce breakdown decreased until a minimum is reached (ata pres-
sure of =50 microns Hg in the Figure) and then increases again (along the dashed
line in the Figure).1 1f the electrode spacing is correet, hbwever, one finds that
the breakdown voltage! becomes independent bf pressure and follows the solid curve
at low pressures. 23 this case, a new type of breakdown called " multipactor"
occurs.

The mechanism of multipactor distharge is illustrated in Figure 2. 1f if
frequency and spacihg are correct, an initial electron occurring near the lower
electrbde will be accelerated across the gap, strike the upper eléctrodé, and
génerate one or mbre sscondary electrons just as the field changeés polarity, The
sécondary electrons, in turn, aré accelerated atross the gap and generate addi-
tibnal secondaries when they strike the Ibwer electrode. In this Way, theé riumber
of electrons in the breakdbwn cascaded until varibus loss mechanisms come into
play and limit further grdwth in the number of electrons parti¢ioating in the
bréakdown,

Thus, the multipactor breakdown may be thought of as a sheet of électrons
oscillating between a pair of electrodes in synchronism With the applied rf field.
ft should be noted that there is no reguireinent for the: presence of gas molecules
to sustain the bBreakdown, In fact, if there are air molecules present, they will
ditimately be struck by d@n ele¢iran and ionized. These ionized géds molecules are
responsiblé for the slight glow visible in the breakdown, The miiltipactor proceeds
very well, however, even ifi hard vdcutirhs,
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Figure 2. Ilusteating Multipactor Dischargeé

Althotigh the multipactor breakdown i8 a resonsince phérommeron, thé résondnce
is very broad as is evident from Figure 3 which sHows the regimes over which
multipactor breakdown cad oceur, For examiple, frequency can be varied over a
2 to 1 range, and appl{ed voltage can be variéd by a factor of 3 without extingiish-
ing thé breakdown. Thé numbers (n) iridicate the various modes possible (h corre-
sponds to the: number of half cycles required for air eleetron to cross the gap),
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3. MULTIPACTOR ELECTRON SOURCE

AS was indicated earlier, the number of electrons partikipating in the break-
down increases uhtil loss mechanisms become important, These include diffusion
of electrons from betwzen the gaps as the result of Coulomb forces, deviation
from synchronism of some of the eleetrons, ece. Past experience in trying to
avotd multipactor indicated th.4 considerable additional loss can be tolerated with™
out extinguishing th. discharge. This in turn indicated that it should be possible
to deliberately extract a sizable electtani current frbm the discharge.

The first approach at devising a scheme for electron extraction is shown in
Flgure 4,. holes were simply drilled in one of the electrodes to permit part of the
electron sheet to pass through the electrode once per rf cycle. {t was found that
this scheme worked remarkably well. It was possible to drill a sufficient number
of holes ifi thé plate that at a distance of {2 to 18 in, from the multipactrr source,
there was do pattern evidetit tr the beam when it illumihated a phosphor target,
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As the result of this initial success, arid because an electron source was badly
needed For a series of experiments that were getting under way, there was no
further experimentation to devise alternate schemes for electron extrattion,

The setup presently in use for the study of insulator photocorductivity is shown
in Figure 5. A control grid (consisting of a second metal sheet drilled with the
same hole pattern as the lower multipactor electrode plate) was added to the source
tb permit simple control of beam current. For these experiments, the accelerat-
ing voltage is applied between the gun and the target. By simply adding a grounded
grid above the target, it is possible to obtain the same beam current while main-
taining a region of zero field above the target. Radio frequency power requiréments
to feed the source are modest (urder 10 W), Ceramic capacitors are used in seriés
with tfie coaxial cable from the rf source to provide isolation for the 0-20 KV vnn .
accelerating voltage used. with the system.

The multipaétor source currently in use provides a beam 8 in, in diameter at
the source, and somewhat larger at the target. In the limited experimentation
carried out on the source so far, electron beam current densities of up to 5uA/cm2
have been achieved.. It is nbt clear that this represents the highest current achiev-
able with this source. It is also likely that the present source design doe.; not
represent the optimum scheme for generating maximum current, however, the
presently attainable beam current density is almost 3 orders of magnitude higher
than typical substorm currents.

A larger beam can be achieved by using larger diameter plates in making the
source. An advantage of this approach aver tryirig to spread the beam via lenses
is that, with the present setup, beatn size ts virtually ertiréely independent of
aceeélerating voltage.

The characteristics of the mutlipactor source can be summarized as follows:

(1) Contamination resistant

(2} Physically simple
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(3) Produces large diameter bearn dlréctly

(4) Beam characteristi¢s independent of accelerating voltage

(5) stability good

(6) No light sutput

Its operation, in the year since it Was first assembled, has been highly satis-
factory, and It 18 recommended as an electrbn souree for systems that must
operate under conditions where normal good vacuum practice regarding long term
cleanliness must be ignored.
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Figure 5. Schematic of Multipactor Electron Source
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