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Abstract

This paper & concerned With a computer program uged for studies o! the
disturbed zones around bodies in flowitig plasmas, particvtarly spdcécratt gnd
their aéséciated gheaths and wakes. The program solves a coupled Poisson-
Vlasov gystem of nonlinear partial-differential-integral equations to obtain digtri-
butlons of electric potential and 161 and electron density about a finite-length
c¢ylinder in a nlasma.flow at arbitrary ioh Mach numbers. Using the author's
"inside«out method"® which follows jon and éléctron trajectoried packward to their
origin at the body durface or in the undisturbed plasria, together With a special
iteration algoritim for self-consgist&ncy; the program takes intb acedunt the parti-
cle thermal motlons with relatively few simiplifylng assum[l)tions. The approach is
apgllcéble to a larger range of pa%lmeters than pther available approdches, tn.
gsample calculations, bodies up to 100 Debye lengths in radius are treated, that ig,
larger than any previously treated realistically.  Applicaticris are made to in-situ
satellite experiments.
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L. INTRODUCTION

The problem &f theoretically calculating the structure bf the disturbed plasma
{frequently referring to the wake and/or sheath) around a moving body in space in-
volves the solution of a complicated system of coupled nonlinear partial differential/
Integral equations. ¥ The equhtions consist bf the Viasov (colliglonless Boltzmann)
equationg for the ions and electrorls, and the Poisgsn equatioti relating the electric
field to the distributiong Of ions and electrons. The difficulty is essentially a
uumerical one because analytic golutions are not possible (for cases of interest),
and there is no unigue appréach. In cases of Itatibnary bodies.z-s a8 well as
moving bodies (theoretical references cited by Parkerl), combinations of numeri-
cal teehniques (finite differences, itération, quadratures, etc.) are required for
treating various parts of the problem. For either stationary or moving bodies,
the choices of techniques and their dse to achiéve cohsistent solutions for any
given set &f physical parameters (defining body and plagma) have never been
bbviods. Innovationg are frequently required. The purpose of thig paper is to
present a technique suitable for a pillbox-shaped body (with emplissis on the
take), 1 which appears tb be reasohably successful over alarge range bf the physi-
cal parameters, and to present sample solutions including applications to iti-gitu
spaceeraft data. The pillbox problem is illustrated schematically id Figure 1,

PILLEGX GEoNETHY

_

PLASMA FLOW

Filgure 1. Spacecraft and
Plasmia-Flow Geometry

332



Varlous approadhes which have been uged for this type of problem are sui-
marized by Parker. Inall suth calculations, simplifying assumptions arc made.
The customary ones are:

(1) Collisions negligible (but extensions of Rarker's collisional theo.~y4 may be
feagible for the wake problem).

(2) Geomagnetic field negligible.

(3) Simplified geometry (use bf varicus types of symmetries).

{4} Simplified surface reaction8 (usually, charged particles are neutralized),

(6) Prescribed lurface emigsion (usually none, but simplified photoelectrén,
backgcattered-electron, and secondary-eléctron emissibn are includable)..

(6) Cohducting body (ususlly perfectly counducting, but finite conductivities
are includable).

(7) Steady state.

These assumptions may be quéstionad (for example the neglect of time-
deépendent phenomena), but they may be at least partially rélaxed by employing
known techniques to generalize the edleulations. In the interest of achieving
réagonably ecohomical culculations within the limits of available computers. the
above agsumptions in their usual farm are adopted in the present wark.

The techniques arid conirutéer program described by Parker® have been devel-
oped to solve the ¢bupléed Poisson-Viasov System of equations to obtain distribu-
tions of ion and electron density, and potential, about three-dimensional bodies
(with axial symmetry about the direction of plasma flow), The method involves the
dsé of a nurherical grid or mesh of diserete points in space, with the potential and
density distributions defined at these points. The Poisson and Viasoy equations are
representéd in finite-difference fbrm at the grid points. A sample of duch a dis-
eretization it r-2 space t& Bhown in Figure 2. Here the polntd represent circular
rings about tho #-ax{s, Assoclated with each pbint is a vblume, ih the form of a
cylinder for points alofig the axis, and in the form of a tofis of rectangular cross-
gection for all other pbints.

For the pillbox problem of Figure 1, the grid uded has the form ghown in
Figure 3. The spacecraft surface is shown by a heavy outline ir the ihtérior of the
grid. The surface of the pillbox coincides with certain rows and columns of grid
poirts ag shown. Here, the grid points ate unegually spaced, so that a higher
density of points can beé used near the spacecraft surface add a Ibwer density
furthér away. Thlg allows a giver nimber of grid points to be uged efficiently.
The potentials at points on the gurface can vary arbitrarily; the pstential distribu-
tlotr shown corresponds to one part of the surface beirig at otte potential (the
""probe) while the remainder i at another potential, {THé surface can consist of
portions with arbitrarily assigréd conductivity and eiritssion characteristics, The
actual nimbes of grid points used Was of the order of hundreds, trather than tens
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Figure 2. Discretizatioh in r-#2 Space

ag illustrated. The shaded areas surrounding grid goints are the cross-sections
bf tbrbidal volurmes as in Figure 2. At the outer boundary of the grid, one must
repredent numerically the bouhdary condition at infinity, namely, guch that the
pbtential vanigh and the velocity distribution be the unpérturbed one. This boundary
must be sufficiently far sut to répresent the outer conditioti accurately. It turns
out to be mbre efficient to use a "floating™ rather than a "fixed" condition on the
potential (Section 3).

While the present problem ig axially syrnmetric, it ¢an be generalized té three
dimensions a¢ follows. The grid in Figure 3 consists of points in r-e space, and
the assoclated volumeés are tori. The generalization would consist of ineluding the
azimuthal variation by adding an asimuthal angle 8 to the ¢dordinate system. The
digeretization in 8 would sonsist of havirg a number of azimuthal planes in ¥ add e.
éach labeled by a glven value ¢f 6, Thug, fdr example, the r-z plane of Figure 3
would be characterized by a given value of 8. The volumes agsoeiated With the grid
points weuld then be pie-shaped.

In the next gection (Sect{sn 2) the "inside-out” method for evaluating particle
flikes and densities (solving the "'Viasey problem', developed By the author® in
1964, will be discudsed; with #éference to the grid of Figuré 3. In this method
the ion and electron t#ajsctoried are followeéd backwdard in time, from the point in
space at which 1t {6 desired to kinow the velocity distribution; 10 the eource vf the
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Figure 3. Difference Equation Grid

patticles in the undisturbed plasma or at thé surface, where the! digtributions are
known, Figure 4, referred tb again {n the next section, {lludtratés §chematically
How a trajectory IS traced backward from any point P and Is found either 6 reach
the body surface or "infinity"" at the boundary of the grid. (The point P & uually
but not riecessarily oné of the spatial grid points; it can also be & surface polht.)
The "delta-factor™ éi i '8 a cutoff functior, and i, j, and K are indices agsoclated
with one of the: trajéctories used to evaluate density or flux ds discussed in tHé

next section. The case illtistrated 18 for contributions frdm the ambient plastis;

for contributione from the surface, the values of 8 {#er¢ and uriity) are interchanged.
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Figure 4. Basis of the Inaide-Out Method

Figure 5 illustrates the fbur possible types of trajestoriss which car contribute
to the particle density at a point. These are Types 1, 2, 3, and 4, so-named by
Parker? and defined as follows:

Type 1

One-way trajectories, going from infinity to the surface, ot from the surface
to infinity.
Type 2

Two-way trajectories ftom infitiity, whieh cotne in, pass through & position at
mintmum distance from the body surface, and go sut again.
Type 8

Two-way trajectories from the body surface, Which go out, pass through a
position at max{mum distance from the bddy &urface, and céime in again,
Type 4

Cloged or nearly-closed trajsctories whieh arbit about thé body indefinitely.
Thiese ecidn orily be populated and depopulated by colitsiéns, which are neglected in
the predetit wark. An analysis of the effect8 of collisions on Type-d trajectdries
has been perfotrrmed by Parkét,

It ahiouid be rioted that contributions to surface flukes can be comprised only of
Type-1.atid Type-3 trajéctoriés; white all four types contributé to sprcd charge.

LS.
[7- 78
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Figure 5. Types of Orbits

In Section 3 the "Polsson Problem" IS discussed, where the electric field
{potentlal distribution) 18 computed with the isn and electron densities considered
known.. On the ottier hand, the "V1agov Problemt'' (Section 2) involves computation
of the ion and electron densities with the field considered known. Hence, since
neither the fleld nor the pafticle dernsitieg are known initially, the Poissnn and
V1agov prablems must be &olved simultaneously,

An iteration method may be used for computing &elf-consistert charged-
particle and patential distributibns. This is herein referred to as the! "Poissoti-
Viasov iteration, " Two principal options are employed for thts procedure in the
present prografn. In one af the options, the “'charge-density" optisn, the Space
charge {8 initially and arbitrarily aggumed to be zero. For this case, one obtains
the Laplace (spdce-charge-less) electric field from the Polsson problem. ‘Thisg is
the "zerc-order" poteritial distribution, which becomes input to the Viasov problem.
Thé resulting solution of the Viagov problem ylelds the ion and electron densitles
at the grid points, which are combined to inel.2 ""zero-order' charge densities,
Theseé become input to the héext Poigson problem, which then yields the "first-order"
potertialg, and so on. In this procedure one usually "mixes" successive charge-
dersity iterates to improve stability; otherwise, the process can "blow up. -~ One
can also mix potential iterates rather than densities if desired. The dependence
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of the stability and convergence of the above procedure bn the mixing parameter
have been studied analytically by Parker?! and Parker and Sullivan. 8 (No other
analysis af thtb type has been published th the author's knowledge.) This (charge-
deneity) sption 15 most effective when the spatial region of interest IS not t66 many
bebye lergths across, The analysig ghows that one can (probably always) choose a
miixing parameter sufficiently small to ensure céonvergence, but at the expense of
additional terations.

In the other éption, the "ion-density option, " the ion density distribution alone
18 assumed initially. Initial guesses which can be employed include (1) tero ioh
density everywhere, {2) unition density (the ambient value) everywhere, and (3} the
neutral ion density which obtains when there are no forces. Whithever choize is
made for the initial guess is designated the "'zero-order" ion density. Now if one
can assume the electron dengity to be given by the Boltzmann factor expl{s), thus
auoiding trajectory caleulationg for the electrons arid affording computer ecoabmy.
the Poisson equation may be solved, holding the ion densities fixed, but regarding
both the potentials and the electron densities at the grid points ag unknowns. This
IS a nonlinear problem, which is solvable by a modificatibn bf the relaxation pro-
cedure used for the ""charge-density' option. The new procedure is an important
advance sincé the iteration IS not as sensitive (tending to blew up) fbr small Debye
numbeérg ab in the charge density optibn. Thus, very large bodies (in multiplés
of the Debye length) can be treated. This has been the method used tb obtain the .
large-body results shbwn below. 1 Similar ideas have been used by call® and
Fburnier, 10 1yt these whbrkers have nbt treated large bodies.

The assumption that the electron denlity is given by the Boltzmann factor
becomes invalid when the body surface potential is near zéro, or when there is a
potbntial barrier or "well" in the wake Buch that the wake pbtentials are mbre rega-
tive than the lurface potential (causing electrons to be attracted to the surface
rather than repelled frbm it). In this case it ig still possiblé to USE the iori~density
option, with its large-body capability, provided that, within each "major" iteratibn
cyéle & "minor' iteration is ecarried out With the ion densities held fixed such that
the electrdn densities are cbmputed realidtically by trajectbry caleulations, at
least for paints near the Burface.

This latter technique IS as yet in an exper{mental stage, but it seems promis-
ing In that it may produce solutions with reasonable costs for large-body prbblem;
in such problems, the conventional Polgsori-Vlasov iteration based on the ctisrge-
density option become&expertisive, 8 disadvantage of the ton-deénsity option,
however, i& that it§ corivergence properties are not understbod; therefore, ite costs
are difficult to predict. This IS in coritrast t0 the cuse bf the cHargé-density optlon
where an analysis is available, 8
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Before considering further-details, we make here SOMe general remarks con-
cerning the meéthed, Following this, the principal results will be summiarizéd.

Briefly, the preseht approach! differs from thbse of Call® and Martinl? by
including both the ten and the electron thermal motions, whereas Call and Martin
represent the distribution of tons by a cold beam and uee an “outside-in'" method. 1
The approach differs from that of 'I‘:‘ay1<'>r12 in that (1) it is applied to three-dimen-
slonal bodies whereas Taylor treats an infinitely-long "thick strip' of rectangular
eross-gection, and (2} the Poisson and Viasév Caicuiations are cycled until gelf-
consigténey is achieved, whereas Taylor's calé¢ulation 18 NOt Belf-consistent because
itis terminated after the first cycle. The approach differs from that of Grabow&ki
and Fischer!3 because they (1) assume that quasineutrality holds everywhere (an
invalid assumption in the VEry rear wake - Bee below and Section 8), and (2) apply
their method to an infinitely-long cylinder. Differences with other methods are
outlined in Parker. ! 'he most similar caleulation previously done was for an
infinitely-1ong cylinder by Fournier, 10 uging the imide-out method. The present
adthor has used the Method for two-electrode rocket-borne’ and laboratory probe
systems, % fur the problem of a small probe In the sheath of a large electrbde, % and
most retently for the problem of the pillbox-shaped spacecraft. | The inside-out
method was 4lso uséd by Parker and W’h'ipple14 for the thesry df a satellite flugh-
mounted prbbe.

Two major advances are represented by the present program, as opposed to
previous approaghes, pirticularly with regard to wakes of three-dimensional
bodiesd:

(1) Thermal motion8 of ions as Well ag of electrons are treated realisticdlly
by following their trajectories in the electric field. (Theion and electron tempera-
tures can be different. )

(2) The technique for achieving self-consistency i8 promisirg for large bodies
many ordersg-of<maghitude larger then the Debye length (the Shuttle-Orbiter or the
mbon, for example).

solutions may be obtained with reasonable amount8 of computer time by
judicious cholces of grid points and other numerical parameters. The method can
be extendéd to include an arbitrarily-shaped body (preséntly a body of revolution),
electron emission from the burface, and differential charging when the surface
consistg bf gections with different conductivity.

In Sectiong 2 and 3 some details of the techniques for the flux and density
calculation ("V1asev probiem"'), afid for the Polsson caleulation, are treated.

Sample calculational results are pregérited in Sections 4 and 5,
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1.1 Summary of Principal Results

The princlpal.results are as follows, In-situ experiments agsociated with the
Ariel 14nd Explorer 31satellites are modeled by a pillbox gesmetry, Theé Ariel L-
experiment observes distinet Wake structures a&soclated With 2 main body and a
small external {6a probe. Transverse profileg of electron current ace measured
at 5 main-body radii downstreamn. The two wake structures are similar in that
they both ghew a below-ambient central core or peak within a depleted-region of the
order of the width of the main body. The theoretical results for the azsumed values
of the parameters asgoclated with the experimeént show no well-defined central core.
They further shiow that all.structure dies away beyond 6 ¢r 8 radii. downstream.

A pronouriced electrical focusing o1 Ions ih the wake of the highly-negative ion probe
is predicted by thé caleulation, but this disturbance is confined to the relatively
near waké and dbes not persist downstream, The filling of the wake in both cases
by thé¢ plasma suggests & fluid-like bulk motion of the plasma. As one moves down-
Btream With the plagma, the motion ig at firstradially inward. This is followed by
a pile-up and a single "bounce" after which the motion is-outward—Simultanecusly,
the disturbance becornes weak and ities away.

Two Explorer 31 cases are comiputed for differeht values of the ién Mach
nimber (the other parameters reémaining roughly comparable), and in bath cases
the body {s geveral kKT riegative. In the case of the larger Mach.num’-er (3. 4), the
ion dehsity in the near wake is below the ¢orresponding electron density, ahd both
are significantly below ambient. This is congistent with the traditional picture of
wake structures With ién Mach numbers significantly above unity. Inthe cage of
the lower' Maeh number (1, 1) the ioh density in the near wake IS above the corres-
ponding electron density, and moreover the ibh defisity is roughly ambient. This
latter may seem unexpected, but {s urnderstandable oh the basis of Langmuir-probe
sheath theséry: Inthe sheath of & sléwly-moving riegative probe the ion density
should predominate over the electrah dénsgity, This latter result {8 néw in wake
theory, and arises because low=-Mach:number wakes with space charge have not
been previously rigetously computed.

For the wake of a large bddy (100 Debye lengths in radius) in the form sf a disk,
the results show that quasineutrality Is valld outside of a cone-ghaped region in the
very near wake, and IS invalid within this region. Other features of the large-body
wake structure inélude (1) a potential well {n the near wake, and (2) a central core
of approximately ambient density of both ions and electrons, Thisé latter feature
geefns similar to that observed {n the Ariel 1 experiment.

340



2. THE INSIDE-OUT-METHAD

There {s mére than onie approach t¢ the problem of caleulating sheath and wake
structures. These approachéd have in commén the follawing eléements. The quanti-
ties to Be computed include (1) the potential distributisn, and (2) the ion and electrdn
density distributions. One may also include the associated Burface current densi-
ties. The equations to be solved simultaneously are (1) the V1asév equation for ions,
(2) the V1agov equation for electrons, and (3) the Poisson equatioh. The solutions
of the V1asov equations (velocity-distribution funétions) are used to compute number
densities (and gurface current densities). The number-density distributions become
input to the (right-hand side of the) Poisson equatioh which yields the potential
distribution. Fihally, an iterative procedure IS used for self-consistency, wherein
the density and potential distribution& are successively cycled until satisfadtory
convergence has been achieved.

The steady-stat&Vlasov equations for ions and electrons state that the velocity
digtribution funstidne remain cétistant along particle trajectories. With the electric
field asgumed given (numerically in terms of a spatial grid about the body), solving
the Viasov equations means formally that one determires, from the shapes of the
trajéctories, the ion and electron velogity distributibns at the grid points. The tra-
jectories relate local velocities at a given grid point to those at infinity or the sur-
faée, Through these relatiohships, the ion or elettron number density at the point
may be evaluatéd by 4 vélocity-integral over the local velocity distribution.  Sim-
ilarly, the current density may be evaluated at desired locations (usually the bbdy
surface).

It is convenient to classify varibus thebretical approachés on the basis of how
they' treat the trajectory part of the Vlasov problem, Ah "inside-but" method fol-
lows the trajectories backward in time to their ssurcé, whilé an "outside-in" method
follows the trajectories forward, in the direction of physical motion of the particles.
{m an outside-in ritethod, the véloeity-dlstribution function is not calculated; rather,
the dehsity is evaluated directly.) There aré in addition other (less reahstic)
methods {nvolving approximations whefe trajectoried are not followed at all. The
three types of appréacheés aré discussed in Pafker. 1 There exists as yet no
systematic comparison of the results of the various approaches with one another.

For the purposes of discussing the iinsldc-out method, we defiine Were the para-
meters of interest:

Plasma Paratneters

n = urpertfurbed nuriber density at infinity

\ T, = lon, electron téthperatired (= T for éqiidl tor and electror
tefnperatures)

= ion mass (electron mass not required)
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Ay = electron Debye length
Body Parameters

R.o = characteristi¢ dimension

Vo = relative velocity of body and plasma

(no = body potential

450 = ea.o/k'ré = dimeéngionless body potential

M= vom = 10N Mach humber (r?elzg?ité?glgfa(:h numbet assurtied
XD = Z\_D/Ro = Debge number

Henceforth, all lengths are to be considered normalized by R,. Thug, Ap will
denote the dimensionless Debye number. We also consider here the case of equal
temperatures. Poteéntiale are normalized by kT/e, so that ¢(r) denoteg the diren-
¢ionléss potential at the spatialpoiht ¥. Number densities are normalized by ng
so that n(¥) denotes the dimensionless density atr. In the calculations involving
inteqrations over velocities, ¥ will denote a velocity normalized by the value of

3kPfM  associated with the partitles of interest. Similarly, E will denote total
énergy normalized by kT, Veluecity-distribution fuhctions (densdted by f) will be
normalized by n,. For agiven body geometry, there are three dimensgionless
physical parameters of interest. narnely, Ap, ‘bo' and M, (For unéqusl tempera-
ture@. the temperature gatio T{/Te represents an additional parameter. )

Consider a single species bf (charged) particle, that IS, iong or electrons,

The electric field is assumed to be knows. In order to corfiputé the number density
n(7) at the point 7, one mult evaluate the triple integral bver velocity spate:

) = [fft6.%) av, av av, (1

*here £(r, v) is the distribution funétion which satigfies the Boltzmann equatison

for the gtven specles 6f particle, T is the radius veetor of the Bpace paint 6f interest,
and Vv is the 16cal Jelocity bf a particle at 7, The velocity-vdume element is
written a# if cartesian cdordinates \Were being used, but the product dv, dv dv, is
intended to dytnbolize an arbitrary coordinate system. Similarly, inorder 0
compute the collected flux at points on the Burface of a bbdy, one rmust evaluate at
each point ti triple lLutegral over veldelty space bf the form

J = f j f 07, ) dv v dv, )
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where v, {8 the component of the parti¢le veloéity normal to the surface at the
point 7,

The problers IS thus to evaluate f. Sincé the problems of interest are agsumed
to be ¢ollislonless ahd eonstant Intime, the distribution function f satiefies the
steady- Btate Viasov {or collisionless Boltzmant) equation, namély,

VaPf+a- g L=0 (3)

Where a i8 the vector acceleration of a particle passing with velocity ¥ through
the point 7. The gradient operators 7 and <., Operate on the Components of 7 and
of ¥, respectively. Equation (3) states that f is constant along a particle orbit,
which is characterized by the cohstants of the.motion. In a general elettrostatic
field (here assumed given) whose sources are volume and surfacs charges, the
total energy E is conserved, where the dimensionless E is defined-by

E 24 4(F) @)

and #{T) ié the dimenslonless potential energy of the particle at r,

With ¢(T) a known function of T, oné may evaluate the integrals in Egs. (1)
and (2) by folléwing orbits backward in time with trajectory calculations to a paint
where f is known. For example, in the case of a body immersed in a plasma, f
is assumed to be known at infinity (where ¢ vanishés), and i assumed to have at
infinity a prescrited energy distribution, such as a Maxwellian With drift. or a
more general distribution. Also, f is aBsumed to be known on the surfaces of the
spaceeraft, I a surface emits particles, ite distribution function must be pres-
cribed. If the surface absorbs without reernitting charged particles, the distribution
function (of emitted particles) is preseribed to be zero. Thus, {1is digcontinuous
in velocity space. That is, the physically-possible velocity space (at the psint )
is divided into three domains, namely, the domain of orbite which have csme ti, ©
froin infinity, the démain of orbits Which have come to r fram the spacecraft gur-
faces, and the domain of t#apped orbits (adsurmied to be undceupied), The shapes of
the bsundaries between the domains depend, of ¢ourse, on the geometry and the
potential function ¢, and it is the heart of the problem (1) t¢ determine the bounda-
ries of the domains of orbits, arid (2) to evaluate the integrals Eqs. (1) and (2) over
those domeaing of velocity gpace.

In pragtice, one need not in general determine: explieitly the boundiry of a
domaln In veloeity space, Rather, one may follow a large number of orbits back-
ward in time (c6mpitationally), dnd evaluate the moment irtegrdls; EQS. (1) and
(2), automatically from the results vf the orbit-followirig. It may, hdwever, urder
gome circumgtdnces be more accurate and efficiént to determine this béuridary. To
dd 8o would complicate the somputér programming,.

343



For a Maxwélllan distributin flowing along the z-direction with Mach number
M, the dimensionless velocity-distribution functisn at infinity may be written:

-2+ M2 - oMy, ) -+ 0% Ml - oMy ) (%)

I |

1
t = —tas— e
372

5 €
377

(velocities in units of. \[ ékT/m s

¥, _® axial component of velocity)

where v, 2, v + ¢ may be identified wnh the total energy E, and vzu withy E
times the cosine-of the ahgle between v and the axis. A similar Maxwellian
distribution may also bé used to represent parti¢lés emitted from the surface. The

moment integral (1) for number density may be approximated by a quadrature gum
as follows:

T 1J K
n = 6fodv~zl:}£, Zk:_Ale ‘lk(t‘ )le (6]

Where d°¥ ia a short-hand notation for the elemeht dv,dv\dv,. and 6 IS a cutoft
(or step) function, equal to unity or zero, depending on (1) whether the trajectory
i& found to come from infinity sr the bddy surface. and (2) whether n represents
the density contributed by particle8 from infinity or from the surface. Inthe gum,
the three indices refer to discrete values bf three esmponents of velocity, where
the values are chbsen in aecord with a quadrature scheme (Gaussian), and the
coefficients Aijk are proportional to the sggociated welghts and other factors. Each
term in the sum represents an itidividual trajectory. A similar sum is obtaltied
for the flux,

In order to evaluate Eq. (B) for the density, or the corresponding equation for
the flux, we transtérm to energy (E) and ahgle (e, 8) variables in velocity spase,
We define « and B by:

& = polar angle With respect to z-axis

B = azimuthal angle with respect to the plane containing the z-axis and the

point T.
The angles a and 8 which define the orientation of the velscity-vector v(while\[-
detines its magnitude) are {llustrated in Figure 6.
It is shown by Parkeri that the: {ntégrals for both the density and flux can be

transformed to the following form sultable for Gaussian quadratures:
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1t .1 .1
I =/ / / T(4,b,¢) . 6(a,b,e). dadbdec . (1)
~1v-1/-1

Here, the rdnges of ¢, B, dnd E havé been transformed to the interval (-1, 1) through
the uge of new variables a,b, and c. In terms of theee latter variables, a¢,B, and
E gare given by

) .=1 G g e d
t cos & for dersit

ala) = co y ®)

ala) = sin-1V1tia ; 2 for flux
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B®) ¢ 3 (1+1) (9)

Efe) = 12544, (10)

where the range of « g from 0 t¢ # fbr denstty and from o to #/2 for flux; the range
of B is from Otb 7; and the range of E {s from é,4 to infinity, where ¢¢ denotes the
potential of the sdurce (infinity br the surface).

The-definition of T in the integrand of EQ. (7) {8 as follows:

— for denstty

) - U(a b, ¢)
T(a. b, c) = (11)

( L ¥ 2 Y a

—5—— for flux

where U(a, b, ¢) ig given by

Ula,b, o) = - ¢S+E(c)+M2

+ 2M YE(e) - cose, (a,b, ¢ (12)
with a , denoting the Value of the polar angle bf the velocity-vector at infinity,
which dégends on thé Ibcal values of «, 8, and E (through a, b, ard ¢). The product

_ cosa, in Eq: (12) is identical to the quantity Ve in Eq. (5).

NoW it IS convenient for flexibility to divide the a-domain into M, equal sub-
intervals, the b-dbmain intb M, equal subintervals, and the ¢-domaln tnto M,
equal subintervals, and then tb use Gaussian quadratures of order 2 in each
subinterval, This leads to a sum of the follswing form:1

M

2 b 2 o 2
I~.5= MaMbM Z Z X Z z Tlalble'): 6(alblc!)
=1J=1 =1 J, =1 K, =1 =1
a a b b -] e (13)
where
J
1 a
a' = 31 CL " 4ok -1-M
a\y3 a
Ly
N S B | -1 -M



Finally, the form of Eq. (A) may be obtained fror Fqgs. (13) and (14) by
writing

K
% T(ai‘bj'ck) : b(ai.b .ck) (15)

L..ML'

1

1
S & et 2
MésMbMe i

al=a‘ with i:Ja+2(Ké-1)
b, = b' W|thj=Jb+2(Kb'1)

. (16)
with k = J, +2(Ke- 1)

LLNCI |

2Ma J =2Mb K=2Me

The sum of Eq. (18) consists of 8 MaMbMe terms, each bf which represents a
trajectory, followed backward from the point of intereat. The cutoff function
6(‘ai, bJ., ck) ig zers or unity, depending upon the trajectbry defined by the indices
i, §, and K characterizing the initial velocity components. The case illustrated in
Figure 4 is for cbntribbtibns from the ambient plasma; fbr contributions frorn the
surface, 6in i8 zers or unity according as the trajectory reaches infinity or the
body surface, respectively.

The computed results to be presented later are baaed on the assumption of
no surface emigsion,

The method of computatibn of orbits involves integration of the equations of
motion, with the fbrces given by the cbmponents bf the gradients of potential. These
components are obtained by interpolation between Values of patential defined at the
points of the grid, say of Figure 3, a8 described in Parker. ! The criterion for
"egeape' or "absorption” of an orbit (thatis, evaluation of 6) depends on the
géometry of the problem and bf the grid. The equations of motion are tntegrated
gtep-by-step until the orbit either gadses out of the outer boundary of the grid
(“escapes™) ot réturns tb the spacecraft surface (s "absorbed™,. THe orbit compu-
tation time-step IS not of physical importdance in thege time-independent problems
where only the ghapé of the orbit matters. The time=-gtep is kept ab large as
possible consistént With maintaining the energy loss or gain within desired limits.
The method af integrating the equatiofis of motlbn, the interpolation method to find
the forces, and the control of step size, are discusgsed in Parker. 1

An {mportant congideration le the accuracy of the quadrature-surm. Naturally,
the accuracy is related to the nurhber of terms used, that is, the number of orbits
where each term corresponds to a unigue orbtt. In a test of the energy quadrature
alone, and Wtth M = 0, the unperturbed velue of density (unity) was computed for
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values o My = 1, 2, 4, 8, 16, and 32, The corresponding numerical errors were
-8 parcent, -7 percent, +1.5 perec.t, -0, 05 percent, +0. 013 percent, and +0. 003
peveent, This test was {Adependent of geotmetry (the ¢ and B Integrations were
numerically exact), Thus, Mg = 4 (8 values Of E) iS taken té represent sufficient
acéuracy (within a few pereent) for the purposes bf computing density for a
Maxwellian digtribution without drift (or, for electrons). For large Mach nusmber:
(M) the accuracy of the above unmodified quadrature IS diminighed. Modiflcatton
for improving the aceurazy at large M by suitably wetghting the integrand in the
domains of importance are given in Parker.

3. THE POISSON PROBLEM: POISSON DIFFERENCE EQUATIONS

In the preeent problem the electrostatic field ig axially symmetric and is
defihed on a mesh of spatial grid points, such that at any point (including grid
points) the potential and electric field can be obtained by interpolation.

Assume that the §pace charge density IS known at the grid points. Consider a
group of interior grid paints, forming a portioh of the overall grid a8 shown in
Figure 7. In this figure, th¢ vertical and horizontal directions are the 2 arid r
directions, respebtively, where z and r detioté the cylindrical axial and eylindrical
radial coordinates, respectively, Three horizontal grid lines, of constant z-values
z;_y» 2y and zy,,, end three vertical grid lines, of constant rvalués g Ry and
r.4q» are shown in the figure. (Note that the index (i) of e iticreases as z decreages. )
"he setof grid lines intersect at 8 grid péints, or nodes, as Bhown. Each point
may be considered to bé asgsociated with a volume 6f space, and to have a group of
four neighboring potntg which "interact” with {t. Thug, consider the central psint
of the group, labeled C in the figure, which may be idértified with one of the grid
paints in Figure 3. Agsoctated with thio point i8 a voelumie of revolution (a torus)
whole ¢rogs-section 18 rectangular and IS shown by the réctangular shaded area
gurrounding Point C. The ghaded area {8 defined by conneeting the midpointa of
the surrounding mesh rectangles. Let * denoté the volume of the torus, and let
the neighborirg points (above, below, to thie right of, add to the left of C) be
labeled N, S, E and W (north, south, east and west, réspectively).

Let the Pslsson equation be written ih dimensionless fbrm as

Vg = -p = i, - n)/AY, ()
where a, n;, RD-. ¢ and p denovté the dimenstornless election dendity, ion density,

Deébye nurriber, electrostatic potential and space-chafgé density, respecttvely, and
all lengths sre id units of the body radius.
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The grid lines may be corisidéred to be arbitrarily chosen so thht the mesh
intervals are nonuniform. In this cage the Poissbn difference equations may be
obtained by integrating Bq. (1) over the volume 7 of the torus assoclated with
Point C:

f/fv2 ¢d?=-/f/pd7g-pcv (18)
T T

where p IS known at the grid potnt C.  The right-hand aide Has been approximated
as shown since T {s small inprinciple, and o i& the value of p at Péint C. By the
divergence theorem,. the left-tand side becsmeés

[fkss

z

8 ) 3¢ 8¢ .
B (‘a‘&, *As (5%)3 +ap(38)_+aw(B), (19)



where £ denotes the surface of the torus; 8¢/6n is the cdmponent of 94 in the
gutward normal direetion at the sutface; A‘N‘AS' Ap, and Aw denote the dreas of
the north, gouth, east, and west surfaces, respectively; and the quatitities
(3¢/8n)y S, BE,W dencte values of 89/8n taker to be constant on the dorrespondin
gurfaces.

(ad;/an)N.s, E,W may be appréximated by difference quotients, namely,

(dy - 6 (6 ~ 8
(g%)ne 1’31"1’ (’g%>s * Ei_s-’;?' o
(B () sy

where # denotes the potential at Point C and ¢y, $x. $g. $y denote the neighboring
poténtials, If Point C i& an interior grid poiht, the areas Ay, Ag, Ag, and Aw
are given by

_n b . 2
Ay =7 [(rJ+1 rp? -y by ) ]
Ag = Ay |
” (21)
# N
and the volume * {3 given by
A
=N .
TEo Byt 1991
Thus we obtain the difference equation in the form
CN¢N + CS¢S + Cpdp + CWd’W -Co = T (23)
where
CeCy+Cq+Cp+Cy (24)
and
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THig shows how to forr the difference equations used for the Poigson problems of
this paper. Egquation (24) kolds only for an "interior' pslrt of the grid, that is, a
point surroundeéd by ne{ghbsrs on all four gides, If Point C Bag & khown neighbor-
ing potential {f¢r sxample, if Point C is adjacent to the spacecralt surface), then
the corresponding term on the left-hand side of Eq. (23) IS transferred to the
right-hand side ag a knoswn quantity.

The boundary conditions for the potentisls in the Poigson problem are as
follows. At paints represeéntitg the body surface, the normalized potentiais are
fized at the chogen values, At the exterrsl boundary) paints of the grid, where
"infinity'' 18 represented on the computet’, a "flsating" condition is optionally used,
namely, 3 linear relation between $ and 8¢/8n, the normal componetit of ¥4, The
exact relation of ¢ 1o 8é/9n is nbt important when the external boutdary ¢f the grid
id sufficiently far away. (For the caleuldtisns to be reported, thé aésuted tela-
tion was the $ & ~ @& far a Coulbmb potential. ) In any case, either the fixed
condition ¢ = 0 or the floatihg condition will give the dame results, prévidad the
grid boundary is moved sufficiently far out. Tue effect of various types of boundary
conditibns representing "infinity' have been studied by Taylor!? ahd by Parker
and Sullivan. 8 In general, the flbating condition appeafd to be computationally
mbre efficient than the fixed one. Of course, th& floating condition bécomes ideal
when the true relation between ¢ and 8$/3n is used, but thig requires that the
asymptotic form of the ablution be known ia advance. For example, see Parker and
Whipple. 14 The boundary conditisns at the outer grid surfaces can be combina-
tionis of fixed and floating conditions,

Conglder a Point C on the outer boundary of the grid where a floating boundary
condition id chosen. If the potential IS assumed to satisfy the linear law

_g.g=%%=.a¢ (26)

on the z«boutidaty (North or South), and

%?; . .g% 2 3¢ 27)
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6n the r<boundary (East only; f°U on the West), then the corredponding "neighbor
term' on the leet-hand gide &f F4. (23) vanishes, and the corresponding 'nelghbor
coefflcient' en the right-hand side of B (24) 18 replaced by oA or §A, wheére A is
the appropriate area. The quantities a and B depend on the position and oh the
assumed model for the variation ¢f thn potentlal at large distarices,

Once the coefficients of all of t'ie equations (corresponding to the grid point6
where the potentiale are unknown) art' computed, the eystem of linear equations of
the form of Eg. (23) may be solved by iteration. Point-successive dyer-relaxation
is a well-known procéss and has been found to be effective Inthe present problem.
For the relaxation process, one rearranges the equations, 80 that the ""diagonal™
term ig alone OR the left-hand side, while all the other terms are an the right-had
side with the known charge-density tefm. Thus, Eq. {23) becomes

First, aninitial guess is made far the valueg df all the potentiale. Then new
values are obtained from the left-hand bides of all of the equations (28), using pse-
vious values On the right-hand sides, One "sweeps' through the equations Success-
ively, replacing the potentials on the right-hand sides withapdated-values as they
become available from preceding equations. This proéedure is usually stable aiid
leads to convergense. "'Over-relaxation" is the process of mixing successive
potential iterate¢ in such a way as t6 enhance the rate of convérgence, 1

When the potedtial distribution is such that the electron density ng 18 approxi-
rhable by the Boltemann factor exp(é), the relaxation equations (28) can include thé. - ..~
Blectron density a8 an unknown function on the left-hand Bide. The equations are
then nonlinear; they may be solved for ¢ by a Newtonian process, with the ion
density ny congidered fixed. This procedure {8 promising for large-body problems.!-

4. SAMPLE RESULTS APPLIED [N IN-SITU DATA

The caleulations repsrted here refer to twé in-situ expertrments, Ariel 113
and Explorer 3116, where data are available, These results are preliminary in
that they are intended a# an {llustration of the capability of the program rather
than as a systematic study. Ceometriéally, the Body IS assumed to be a pillbox, &
evlinder of height equal tb its diameter. The three dimensionleés physical para-
meters defining the problem are ¢, M, and Ap, defined (earlier) by:

% B eco/k'r
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where T is the plasma temperature (assumed to be the same fo ions and elestrons'),
$, Is the body potential (for a sonducting nonemitting body), v, is the velocity of
the plasma flbw relative to the body and parallel to its axis, m ig the i¢n mass,
K, is the bbdy radius, and Ay i the dimensidnal Debye length.

The numerical parameters fér the calculations to be described include ¢ the
order of 100 grid points, distributed mostly inthe wake region, ahd of the order
of 500 trajectories per grid point, distributed among the two angles and the energy.

4.1 Ariel.! Satellite—

Figure 8 is a schematic drawing of the Ariel 1satellite, showing the locati®h
of electron and lon.probeés, after Hendersgén and Samir. 15 The.boom-mounted

Figure 8. Arfel 1Sateilite Schematic. Shows main body, pssitive-ion probe,
and electron bogm -probe
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probe rieasures electron-currents at ¢ distance 9 Ry from the center of the satel
lite (main-body) whith has aradius Ry = 11.5 fn o¥ 20 CM. The fon probe mounted
nedr the surface and on the gpin axis IS a small sphere 6.6 times émaller than the
maib bddy. The datellite welocit; i0 such that the ion Mach number is absut 4. The
satellite potential IS &bout4 kKT (1 volt) regative with respect to space. The satel-
lite radiug i8 equal t& about 10 Debye lengttis. Due to the satellite motion, spin,
and arlentatlon, the boom probe sweeps through the wake during each spin revolu-
tion, Insuccessive revolutions, it sweeps through at differént angles and samples
the structure of different parts of the Wake.

Figure 9 shows nérmalized electron curredt data taken from the paper by
Hendergon and Samir (their figute 4). 13 taparticular, the data at 6 = 84° (labeled
""MAIN"")Bamples the wake structure associated with, the main body, while the data
at @ = 60° (labeled "I P.") aamples the wake strudture of the iott probe. We Will
conséider separately the main bbdy and ion prbbe in the-following comparizons
between the data and theoretical calculations. ......

4.1.1 ARIEL 1 MAIN BODY

Although the data in Figure 9 is "bumpy,' the # = 849 profile for the Main body
indicates aminor central peak or bump. of height about 80 percent of ambient,
within the depleted wake region wheré the minimum is abdut 50 pereent of ambient.

Flgure 10 shows transverse profiles computed fbr the wake of the main body,
of nj (normalized ion density), n, (Hormialized electrbn density), and¢ (dimension-
less potential) in the wake region downstream. The parameter values in Figure 10
are ¢o : -4, M =4, Ap = 1/10. Thirteen major iterations (Poisson-Vlasov cycles)
were computed. Thée profiles are in transvérse planes at various dlstances down-
stream, and all lengths are normialized by the bbdy radius. Thué, z denote8 axial
digtance downstream, in radii, with 2 = 6 defined aé the rear surfate of the pillbox
(looking into the wake); and r dehotes radial or transverse distarice from the axis
(r = 1is the bbdy radlus). The profiles of n, n,, and ¢ are arranged vertically in-
order &f increasing axial distance e. There are 8 values of 2z, namely, & = 0.2,
0.5, 1.0, 2.0. 3.0, 4.0, 5.0, and 6. 0. Each profile id constructed of 9 values
of r, namely, r =0, 0.1, 0.3, 0.6,0.8, 1.0, 1.2, 1.5, amd 2.0. The suter-
boundary conditions are applied at 2 =  and r = 2; for the main-body problem, the
boundary conditlon &t e = 6 IS the fixed one, whilz floating conditions are used
elbewhere. The profiles consist of gtraight-line segments connecting the values &f
the functions (n;, n,, or ¢} computed at 72 grid points in the wake reglon.

The featureé of the wake etructure are as followé. The near wake (2 < 1) is
clearly depleted of both Ions and eledtrong, with the tun density lower than the
electron density. Further downstream the Wake becomes increasingly filled in,
between about € = 1and e = 4, where e = 4 IS the ton-Mach-number of radii
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downstream.

In this range of e the ion profiles tend tb be relatively noisy, indica-

ting sensitivity to numerical errorg, which may in turn trnply a tendency toward
physical instability, The trend of the ion and electron profiles suggésts a radially-
inward built mbtion of €heplasma within the wake ds If it were a fluld Wave propaga-
ting inward, plling up nedr the center, and Bouricing out agaln as it moves down-
stream. The disturbance bas essetntially dted away at e = 6 radit ddwnstreem.
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There ig ao well-defined central bump similar to that in the experimental
data in Figure 8,

4.1.2 ARIEL 1 ION PROBE

According to Henderdon and Sarrir the profile in Figure 9 at 4 = 60° samples
the ion probe wake structure. This structure ig similar to that of the main body,
having a below-ambient central peak within a depleted regibn of about the game
width as that agsociated with the main body. The ion probe ig about 1.7 Debye
lengths-ir radius and is biased at about 28 kT (7 volts) negative with respect to
space. Hence it may be expected to produce at least a profounced focusing effect,
as is borne out by the following computed results.

Figure 11shows transverse profiles computed for the wake of the ioh probe.
The notation is the same as that of Figure 10. The parameter values dre ¢, = -28,
M =4, andAp = 1/1.7. Ten major iteratiéns were computed. The outer boundary
at z = 10 wag placed Sufficiently far downstream io ensure that thé disturbances of
interest are contained within the grid. Morebver, a floatihg condition is emplbyed ..
there as well as elsewhere. (The number of grid points was larger, thad in the
main-Body problem.)

The main features are as follows. The ion profile&atz = 1 and z @ 2 show
that a strong focusing effect sccurg near the body. Further downstream, hawever,
the digturbance dies but; there is essentially none at z = 8 and beyond.

The radially-inward and outward bulk motibn bf the plagma as it fills the wake
is again a fluid-like feature. Again, there IS do persistent peak at the center of
the wake a8 indicated by the data. If this were.an isolated body, the Henderson-
Samir data wbuld imply that the peak persists far downstream tb beyohd a distance
of 33 radii. The present thesretical calculation indicates no structure at z @ 8 and
beyond.

4.1.3 COMMENT ON COMPARISON OF THEORY WITH EXPERIMENT

A central bump may perhaps be generally expected on the bagis of nonrigorsus
theoretical arguments invoking (1) electrostatic focusing effects br (2) convergence
of ton streams during the filling of the wake principally at a Mach number of radii
downstream, or (3) a combinati: n of these. 15 However, previous theoretical
calculations indicating such burrips have been deficient in some respect with regard
to their rigorous applicability (for exdamiple, cold ians, {nfiriitely-long cylinders,
non-self-consistent), Simila.ly, there have beet laboratory-simulation experiments
Which Rave ind{cated bumps. 17 iowever, it ie presently still difficult to simulate
lof transverse veldcity distributions in-the laboratory, and the effective ion
temperature is generally too law. Herce, there does not exist thus far an unambigu-
ous explaration of the Ariel 1 data. (Note: T, was not measured, but was assumed

here to be equdl to T_,. Theoretically, bumps in the wake have been predtcted for
T, less than Te,ll,uﬁ
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It {s also OF interest to rioté that a large body produces a central=core enhancé-
merit, as will be skown later.

4.2 Explorer 31 Suiellite

The results of this gection Were obtained in the process of computlrig a number
of solutions ts b& compared with ir-situ data obtairied on the Explorer 31. The
parameters adopted were suggested by Samir (private communication) based on
8. different passes of the Explorer 31 satellite, as lilted in his paper with Jew. 16
A small portion of two of theee cases Will be discussed Were, Without a quantitative
comparison with data, in order to illustrate a specific point.

Figure 12 shows computed electron and ion density transverse profiles in the
Very near wake of a body with the paramieters

o = 4.3

. -1
Ap = (6.9)
M = 3.4

These are the parameters in the ease of Curve No. 10of Samir and Jew. 16 e
computed profiles in Figure 12 are at z = 0.2 radii downsgtréam, thatis, similar
to the lowest profiles in Figure 10 where thé parameters are of similaf order.
Here the vertical scale (normalized density) i& logarithmic, as oppoged to Figure
10, where it is linear. The ion densities are denoted by circlés and the electron
densities by squares. The principal features shown in Figure 12 afe as follows.
Fbr r greater than about 0.8 radii, the ion density i higher than the electron
density. Mbreover, the ion density drops more abruptly in the victnity of the
"shoulder" {re= 1) than the electron density. In the central wake both densities are
far belbw rnormal, with the ion density abaut an order of magnitude below the
electron dengity. This is the usually-expected picture of near-wake gtructure.

Figure 13. on the other hahd, show# cortesponding computitional results for.
the case bf Curve No. 4 of Samir and Jew, 18 where the parameters are:

¢, = -5.4 1
p= 1
M =1.1

Here, the most significant change is the lower Mach number (1. 1). The curves in
Figure 13 are gualitatively different froth those in Figure 12. The new electroh
detisity profile ig shifted downward slightly, but the riew ion denisity profile is
moved up to approximately & constatit roughly equal fo the tiormal value,
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The fact t:at the ton wake dernslty io above the electron denséity at all r may be
unexpadted from the paint of view of "traditional" wake theory, but scems reasoaable
én the basil of Langmulr probe theory 2-5 According 1o probe theory, a atationary
negative electrostatic probe in a plasma will have adjacent to it a shicath {n which
the ton densglty exceeds the electrbn density. If the probe begins to moeve slowly
relative 10 the plasma, bne expects the gheatli structure at first to be only slightly
changed, with a continuation of the predominance of the i3ns over the electrons.

At suffieiently large velotity, however, the traditional wake structure with electron
dorination aver fong should appear as in Figure 12. The value bf ion Mach number
at which the tradéition should octur has not been predicted but can be established
by additional computations of the preserit type.

5. A LARGE-BODY PROBLEM

In thig section we consider the wake of a large body, 100 Debye lengths in
radius. ! The body is id the farm of a disk oriented nbrmal to the flow. For this
case (Figures 14 and 15) the parameter values are

Figure 14 Figure 15
¢0 = -4 ¢° = —4

_ -1 _ -1
;\.D = (100) ?\D = (100)
M =4 . M =8

Here the parameter values differ qualitatively from those of the preceding problems
in that Ap i& bo small. This size of mbving body is larger than has beed previously
treated by trajectory-following, that is, realistic, calculdtions. The regults show
what may be expected €or the wake structure of large bodies in general. This cuse
requires: More effort (computer time and judiciéus gelection of numerical para-
meter$) than that of a smillér body. The solutions 8hown, therefore, are intended .
to be illugtrative rather than accurate.

Six {terations, or Poisson-Viagov cycles, were coriputed using the {on-density
optton, in Which succedsive {terates were not mixed, startihg with the neutral ion
dengity as an initial giess, The nominal humber of trajectories, 512, wad used at
all grid points,

The profiles of n,, fi,, and ¢ th Figure 14 are condtructed in the same way and
at the same grid points as tn Figure 10. Tabulated values are given in Parkef. 1
The wake ts essentially "empty" of both ions and electrons between 2 = 0 and 2z - 1,
and begins to fillup between z = 2 and e = 3. Inthis way, the wake is qualitatively
similar to that in Figure 10.
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Two bte of lon-density profiles are shown on the left side of Flgure 14, the
unlabeled preiiles for the 6th order (Ath tteration), and the profiles labeled "A"
for the 5tH order. Comparisofi of the ng-profiles with the 5th order ni-prot‘tles
(labeled "A" to denote that the ¢-profiles and n,-profiles in the figure are derived
from thesge) indicuted that the quasineutrality assumption tg valid ¢verywhere out-
side a cone-shaped regién rear the Wake surface; the cone height along the axis is
between larid 2 radil. This is in accord with expectation for a large body. Near
the wake surface, however, quasineutrality i8 violated becauge the effective Debye
letigth is large. The similarity of the n -profiles (labeled "A") and the ne profiles
in Figure 14 is a con8equénce of riear-quasineutrallty,

Comparigon of the 5th and Sth order ni-protiles (labeled "A' and unlabeled)
in Figure 14 show that the golution ill reasonably coriverged for z = 1and below,

but that there is incomplete convergence at z =2 and beyond. The incomplete
convergence &nd apparent structure at 2 = 2 and beyond may be artifactual due to
ingufficient numerical accuracy. (No attempt was made to achieve high accuracy
since thil wasg regarded as a preliminary run.) The structure and lack of conver-
gence arc seen to extend past z = 5, so that the downstream boundary should be
placed further than at a = 6.

Desgpite possible inaccuracies, one may infer additional physical conclusions
indicated by Figure 14, namely, (1) the suggestion of a core of high (approximately
ambient) density of ions and electrons on the axis, and (2) the occurrence of a
potential well in the near wake, defined as a region with 9-values below -4. The
shading in the two lowest ¢-profiles denote cross-sections of this well. The wake-
surface normalized fluxes are 1.1 x10~8 (5th order) and 2.4 X 10”7 (sth order)
for ions, and 4. 5X 103 ¢~ electrons. The electrbn current density ill less taan
exp(-4), as would be expécted in the presence of & potential well.

The region of wake disturbarcé¢ probably extends more than 6 radii downstream,
and between 2 add 3 radii in the transverse direction.

Another large-bbdy case (Figure 15) is gimilar to the previous large-body
case except that the Mach number is increased from M = 4 to M = 8. Ten itera-
tiong weré computed in which successive tteratés were used without mixing,
starting with uniform ambient ion density. (The latter statting condition was in-
advertently different from that of thb M = 4 calculation which wae started with the
neutral {sh dengity, but this difference ghould become unimportant after many
{terations, ) Simiilar statements may be made about the iricompleteness of the
convergence as in the M = 4 case. The 9th and 10th order ion densiti¢és are
labeled "A" and unlabeled, respectively. On comparing these, the convergence
seems fairly gpod at 2 o 0. 5and e = 1. Again, the disturbance extends beyond
¢ = 5, so that the downstream boundary should be moved further than 2 = &,
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Degplte {naceuracios, the conalstericy le such that physical conclusions may
be drawn as follows. In thia case, tho wake i8 seen to remain empty further down-
stream than in tho M = 4 casé. In addition, the suggostion is thuch stronger that
there iv a contral core of amblent dengity for both ions and eléectrons along the
axis. Mareover, the potantial well {8 wider aiid lohger than in theM - 4 case,
although the depth ig about the same. The normalized wake-gurface fluxes are
7.4 X 10730 {9tk order) and 4.2 X 10739 {10¢th order) for tons, and 3.7 % 103 for
electrong, The clectron flux is slightly lees than the M = 4 value¢, and is again
less than exp(-4).

The cotiical region behind the disk where quasineutratity breaks down is now
longer that {n the M = 4 case, extending to between z = 4 and z = 5 alohg the axis.

The region of wake digturbarice is probably longer than ¢ radii downstream.
as in the M =4 case, but may not extehd beyond about 2 radii in the transverse
direction.
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