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Abstract

The AFCL spherical electrostatic analyzers aboard the polar orbiting Injun 5
satellite were designed to measure the temperature and density of the plasma as
well as the vehicle potential. Significant vehicle potential fluctuations have been
observed at altitudes near 2500 km in the nighttime, topside ionosphere. At auroral
latitudes, precipitating magnetospheric electrons frequently drive the satellite to
such strongly negative potentials that the ambient electrons are shielded from our
instruments. In such cases, simultaneous measurements by the lowa State Uni-
versity LEPEDEA experiment can be uded to calculate the vehicle potential.
Potentials of up to -40 volts are observed during impulsive precipitation events.
Within the plasma trough vehicle potentials vary between -1.5 and -4 volts, as
compared with the -0.5 to -1 volt observed in the polar cap. The source of thts
vehicle poivntial enhancement is ascribed to fluxes of photoelectrons that have
escaped from the sunlit conjugate ionosphere,
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LoOINTROM CTION

The potential of a satellite in the topside ionosphere varics in response to
changing plasma parameters, 1-4 |y this report, we discuss spacceralt charging
mechanisms in the topside ionosphere utilizing data obtained by tho two AFGI,
spherical electrostatic analyzers (SPA) aboard the polar-orbiting Injun 5 satellite,

The AFGL experiments on board Injun 5 are discussed elsewhere. 5 Briefly,
Injun 5 was launched into polar orbit with an inclination of 81°, an apogee of
2543 Km, 1nd a perigee of 677 km. The two AFGL sensors are placed on 5 fuot
booms ard, due to the sateilite's magnetic alignment, are well outside the vehicle
wake. A schematic of the probes given in Figure 1 shows that both the ion and
electran SEA's consist of 1-inch diameter solid collectors surrounded by two wire
mesh grids, The potentials of the collectors are set at -2000 and +100 volts. The
outer grid of the ion SEA is groinded and the inner grid is held at t28 volts with
respect to satellite ground, thus filtering ions with energies less than 238 volts.
The electrofl sensor grids are electrically connected and are operated sequentially
in two modes, each of 15.9 sec duration. In Mode 1, the grids are set at 16 volts,
This positive resting bias is intended to counteract expected negative satellite
potentials. In Mode 2, the grids are swept from -10 to +3 volts. Operating in
these modes, we are normally able to measure the ambient electron temperature
and density, the satellite potential, ana the omnidirectional flux of ions with ener-
gies greater than 28 eV,

INJUN 5 LOW ENERGY PLASMA DECTECTORS
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Figure 1. Schematic of the AFCL Electron and lon
Spherical Electrostatic Analyzers Aboard Injun 5
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2. OBSERVATIONS

Results of vehicle potential measurements are discussed in terms of four
typical cases. All data were tnkcn whtle the satellite was in darkness and near
apogee over the northern hemisphere during December 1968, In the first (polar
cap) and second (plasma trough) cases, the satellite potential was directly meas~
ured from Mode 2 current = voltage curves. The third and fourth cases were dur-
ing soft and hard inverted-V precipitation events. Here the University of lowa
LEPEDEA measurements are used in Conjunction with those of the SEA to place
boutids on the satellite potential.

Figure 2 gives a Mode 2 log | vs, V plot taken from the quiet time orbit No.
1463 while the satellite was in the polar cap region. For strongly retarding poteri-
tials, we note a steady background current whi¢h corresponds t0 & hyperthérmal
electron flux of 2 X 1d7/em” sec, This flux is due to polar rain precipitation. 6
Near zero applied volts the curredt rises sharply, then approaches a saturation
level id the electron acceleratioh region. W e note that the applied voltage is rela-
tive to satellite ground. The applied voltage with respect to the plasma is found by
algebraically adding the satellite potential.
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Figure 2. A Mode 2 Plot of Iognl versus V Taken while the Satellite
was at —2500 km Over the Northern Winter Polar Cap
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Electron temperatures T are calculated by assuming that the ambient plasma
is Maxwelllan and applying the equations of Mott-Smith and Langmulr

-1
T - . q d_wglo I. (1)
e 3.3k av ]

where q B the electroh charge and k the Boltzmann constant. A 50 point funning
linear regression is performed on the data to determine the steepest slope in the
retarding portidn of the curve and is used in Eg- (1), To calculate the vehicle
potential, a linear regréssion is performed on the final 30 points of the Mode 2
log I vs V data. The potential at the intercept of the retarding and accelerating

regression lines is the hegative of the satellite potential with respect to the
plasma V4

Vg = = = intercept ° (2)

3

’

For the case presented in Figure 2, n, = 100 cm”
volt, where n, is the ambient electron density,

The second example is taken from another quiet time orbit No. 1380 as the
satellite passed through the midlatitude plasma trough (Figure 3). Using the
methods described above, we calculate that n, = 100 em™? and T, 8 7600°K.

Though the density is the same as in the first case, the temperature is a factor of
four higher. Where lag I {V), in the extreme retarding portion of the sweep, was
constant in the polar cap, here it rises linearly with increasing applied voltage.

By calculating the solar zenith angle in the production region of the conjugate iono-
sphere, it can be shown that the hyperthermal electrons are photoelectrons from
the sunlit southern hemisphere. 8 Tothe SZA, the conjugate photoelectrons appear
as a nearly Maxwelliah population with a temperature of ~10 eV and a density of
~4 em™3, Because the conjugate photoelectrons are efficient heaters of trough
electrons, 3 they affect the satellite potential in two ways: (1) directly as a current
away from the satellite, and (2) indirectly through enhahced thermal electron cur-
rents. Thus In the trough th&satellite potential was -1.65 volts as opposed to
-0.67 volt in the polar cap.

It is to be expected that the most dramatic examples of tonospheric spacecraft
charging are found in the nighttime auroral oval. We now consider the vehicle
potential response to a low energy and a High energy inverted V prectpitation event.

The University of lowa LEPEDEA ' electron observations for the quiet orbit
No, 1463 are given in Figure 4. Note that the more poleward inverted-V is marked
by a sharp onset at 02:27:30 UT, a double peak in intensity, and maximum differen-
tial fluxes near a few hundred electron volts. S$%A data for the same event are

— o) : _ .
T, = 1932°K, arid Vg = -0.67
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Figure 3. A Mode 2 Plot _ " log I versus V Taken while the Satellite
was at ~2500 km Over the Winter Midlatitude Trough
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Fi 8ure 4. LEPEDEA Electron Spectragram From Injun 5 orbit No. 1463 (Prank
Ackerson)

71



shown in Figure 5, Omnidirectional fluxes of positive ions with E > 28 eVare
given in the upper trace, and alternating Mode 1/Mode 2 electron huxes are shown
below. In the ion data, the inverted Vi at 02:27:30 UT appears as a flux enhance-
ment with the same double peaked structure observed in the LEPEDEA electrons.
The electron sensor was in Mode { with a grid resting bias of +6 volts at the start
of this event. The total measured electron flux d=creased as the precipitating flux
increased and increased at the time of the valley between the two peaks. During
the second half of the inverted V, event, the electron sensor switched to Mode 2.
The anticorrélation between measured and precipitating fluxes durihg the Mode 1
portibn of the event indicates that the vehicle was being negatively charged. The
flux measured in the extreme retarding portion of the subsequent Mode 2 sweep is
a direct measurement of the omnidirectional flux of precipitating electrons.

The degree of charging during this léw energy precipitation event can be esti-
mated if we assume that the ambient plasmia remained fairly constant through the
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/Figure 5. The lon (Top Trace) and Electron (Bottom Trace) Flux Measure-
ments During Orbit No. 1463
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event. Since the resting bias of the grids was +6 volts, the flux measured during
the Mode 1 portion was the stim of the thermal ahd hyperthermal .lux that would

be measired {f the grids were biased at V- 6 + Vg At 02:27:36 UT, 9the tlgle of
the first precipitation peak, the measured electron flux was 5.5 16 em - sec’
(Figure 6), The measured flux at 02:27:42 UT, the ttme of the second precipitation
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Figure 6. Same as Figure 5 for the Time Period
02:27:00 to 02:28:00 U'T, Orbit No. 1463
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peak, was 2.8 x 102 em™2 sec”!, since the precipitating flux in the first and sec-

ond peaks were about equal, the thermal electron flux contribution at 02:27:36 was
~2.7 v 10 em 2 sec”t, We next compare this with the flux measured during the
previous sweep. At 02:27:18 UT, a flux of 2.7 x 109 em™?2 sec”! was measured
with the sweep voltage was at +2. 5 volts. This means that the satellite potential
was approximately -3.5 vblts ( 2.5 = 6,0).

Satellite potential variatiohs typical of more intense precipitation events were
observed duping orbit No. 1487. The LEPEDEA!! electron observations for this
orbit show adjacent intverted V's at 01:48:00 and 01:48:45 UT (Figure 7). Counting
rates peak near 5 keV in the first, and at greater than 10 keV during the second
inverted V event. The flux of electrons!! with 50 ev =< E = 15 kev and pitch angles
of 0° and 90° are shown in Figure 8. The directional fluxes at these pitch angles
were ~10% em™2 se¢”! sr7l and generally within a factor of two of one another.

The LEPEDEA 12 was unable to measure a field aligned proton fldx in the energy

Figure 7. LEPEDEA Electron Spectragrain From Injun 5 Orbit NOo. 1487 (Frank
1975).
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Figure 8. LEPEDEA Electron Fluxes at Pitch An\?les of 0° and 90°
it the Energy Range eV < E =< keV During Inverted V Events of Orbit
o, 1487 (Prank, 1875)

range 40 ¢V = E =< 15 kéV during these events (Figure 9). The SEA observations
are given id Figure 10, It is impossible to distinguish between Mode 1 End Mode 2
fluxes during the second inverted V event. This is because ambient electron col-
lection is completely suppressed by a satellite potential whose upper bound can be
set at -6 volts (because of the +6 Mode 1 grid bias). During this period the Lo
flux, thie upper trace of Figure 10, varied rapidiy between 4 x 10% and 8 « 108
em™? = sec™!, The lower value s a default level indicAting that the current to the
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Figure 9. LEPEDEA Proton Spectragram From Injun 5 Orbit No. 1487 (Frank
and Ackersot;, 1972)

ion sensor was negative, That is, the flux of electrons with E > 2 keV, the ion
collector bias, exceeded the total ion flux.

The peak ion flux observed during the second inverted VvV of 8 v 10
could be due either to precipitating protons or to a combination of precipitating
protons and ambient ions accelerated to the sensor by a negative satellite potential
<-28 volts.

8 2 -1

cem”© sec

To test the first hypothesis, we first calculate the density of the parent elec-
tron population. If we assume that the precipitating flux is isotropic over the down
coming hemisphere, then the total electron flux is

¢ . ~w#n V
e eth,e (3)

where n_ and Vih e aT€ the precipitating electron's density and mean thermal
velocity in their magnetospheric source region. Their temperature is estimated

frofn the LEPEDEA observations to be ~ 10 keV and their omnidirectional flux as
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Figu r e 10. The lon (Top Trace) a nd EIeCtron (Bottom Trace) Fluxes Measured by
the AFGL SEA During Injun 5 Orbit

measured by the SEA is —2.5 X 10% em™2 sec”!, Substitution of these values into

Eq. (3) gives a parent density of 0.83 cm'3, a value typical of the plasma sheet.
Assuming that the proton flux is isotropic and that ng = n in theé source region, a

flux ofs x 108 cm™2 sec”! implies a magnetospherlc proton temperature of 480 keV,

Thts is considerably higher than ahy measured proton temperature. Mozer and
Bruston'? have measured flues of precipitating protons with similar energies over
an auroral form but with fluxes decreased by two orders of magnitude. We con-
clude that the ion flux canhot be due primarily to precipitating protons.

1f we accept the second hypothesis that accelerated ambient ions are contrib-
uting to the measured flux, then an upper bound of -28 volts can be set on the

vehicle potential. A lower bound of -40 volts can be set on the vehicle potential.
There are 117 energy channels measured by LEPEDEA in the range 40 eV < E =

15 keV. It is highly unlikely that an ion flux of 8 » 108 could pass undetected.
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Tho satellite potential adjusts itself »~ that the fotal current is zero. The
precipitating electron flux is ~ 2,5 « 109 em™© see” ", In the absence of an electron

flux to the icn sensor, the measured ion flux would be equal to the electron flux.
The electron flux to tho negatively biased ion sensor collector (=2 kV) is
-qV/kT
b | 2.5 v10% ¢ ¢ (4)

where ¢, ; is the hyperthermal electron flux to the ton sensor, V2000 volts, and

kT, = 10'keV, Thus¢ = 2x10% em=2 san'_lz Thys the measured ion flux
should be dnet © 25 vel@g "¢ 75X 108 em™ “ séc ', Given the uncertainty in
'

the precipitating electron temperature in Eq- (4), this number compares favorably
with the measured ion flux of 8 x 108 em™2 sec-1.

The vehicle charging hypothesis also helps to explain th&rapid variations in
the ioh flux between high values ang the default level near 01:48 UT of orbit No.
1487. Relatively small modulations of the vehicle potential above and below -28
volts allow the ion sensor grid to act as a gate determining whether ambient ions
or energetic electrons reach the collector.

3. SUMMARY AND CONCLL SIONS

In this report, we have presented ioh and electron fluxes observed by the
AFGL sensors aboard Injun 5. All data were taken while the satellite was in
darkness. They can be used to establish typical values of spacecraft charging in
the topside ionosphere. The vehicle potential was found to range from -0.67 volt
in the cold tenuous plasma of the polar cap to ~ -40 volts as the satellite passed
through an intense auroral precipitation event, To a first approximation, the
results are consistent with a simple flux balance calculation of the vehicle
potential.
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