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Abstract 

 
We present a computational approach to specifying and forecasting the outer radiation belt 

particle distribution, by incorporating data from space-based measurements. In this approach, a 
Kalman-Bucy filter is designed to assimilate particle flux data from a spacecraft spanning a 
broad range of particle drift paths.  A spatial analysis algorithm is used to incorporate this data 
into the framework of a physics-based forecast model, using the statistical error structures of the 
model and data to produce an optimal estimate.  The assimilation algorithm is validated in a set 
of experiments simulating a magnetic storm, using artificial magnetic field and particle flux data 
fabricated by an independent model.  The simulated data is compared to the model over the 
entire modeling region at each time step, providing a global assessment of the model’s accuracy 
over the course of dynamically active period. 
 

Introduction 
 

Our ability to forecast the environment of energetic particles trapped within the Earth’s 
magnetosphere is limited by our incomplete understanding of the physical processes involved, 
and by our inability to accurately represent the dynamic behavior of the magnetic field.  This 
paper describes an approach to overcoming these limitations, by incorporating real-time in situ 
data into a physics-based dynamic model.  Techniques in spatial analysis and data assimilation, 
widely used in atmospheric weather modeling, are adapted to the problem of modeling the 
trapped radiation environment with a limited number of space-based observations. 
 

The greatest difficulty in applying these techniques to the modeling of magnetospheric 
phenomena is the sparseness of real-time data.  In the case of the radiation belts, for example, 
there are seldom more than two or three satellites providing simultaneous measurements of 
particle flux at points throughout the magnetosphere, and these measurements tend to be largely 
concentrated in geosynchronous orbit.  However this situation is likely to change in the near 
future, as the number of spacecraft put into orbit for scientific, military, and commercial 
purposes continues to increase. 
 

In anticipation of increasing data availability, we have begun to develop the theory and 
computational tools needed to incorporate data into a variety of magnetospheric models, such as 
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the radiation belt model described in this paper.  While the full benefits of this approach may not 
become clear until the observing system becomes more complete, the results presented below 
suggest that the assimilation of even a few observations may significantly improved the accuracy 
of specification and forecast models. 
 

The next section provides a brief overview of the data assimilation techniques employed in 
this study, with emphasis on the terminology and mathematical formalism guiding our approach.  
Section 3 describes the application of this formalism to a simple model of radiation belt particle 
dynamics.  In section 4, we describe a simulated magnetic storm scenario that is used to test the 
data assimilation algorithm.  The results of these tests are presented in section 5, and in section 6 
we assess the viability of our approach and consider its extension to more complicated and 
realistic situations. 
 

Data Assimilation 
 

The data assimilation approach used in this paper is known as the Kalman-Bucy filter, 
originally devised for linear systems of ordinary differential equations [Kalman, 1960, Kalman 
and Bucy, 1961].  The Kalman-Bucy (KB) filter has two main components: spatial analysis and 
prediction.  The spatial analysis algorithm combines localized observations with a model-
computed background configuration to estimate the most probable state of the entire model 
system at a particular time.  The prediction algorithm propagates the configuration forward in 
time, using the physical rules of the forecast model to govern the evolution of the system.  In the 
KB filter, the output of the prediction algorithm forms the background configuration for 
subsequent spatial analysis.  
 

In the spatial analysis portion of the KB-filter, observations are incorporated into the 
background configuration of the system by a process known as statistical interpolation, originally 
devised by Kolmogorov [1941] and Wiener [1949].  Statistical interpolation is essentially a 
weighted least-squares fit between observed and background values, in which the statistical 
weights are functions of the errors and correlations (known or estimated) associated with each 
value. 
 

The formalism of statistical interpolation can be defined as follows.  Suppose at a time tn the 
configuration or state of a system is defined by a set of quantities sn, where sn is a vector of 
length L (hereafter a single underline denotes a column vector, and double underlines a rank-2 
array).  The state vector might represent, for example, the value of some physical quantity on a 
regular grid of locations   .  An empirical model or a previous forecast provides a 
background estimate of the state 

r1, r2,K , rL

sn
F.  Further suppose that at tn there exists K observations dn of a 

physical quantity d, which is related to the global state sn by 
 

 dn = Hn (sn )       (1) 
 
For example, d might be the value of s at an observing location ro, which does not (in general) 
coincide with a point on the model grid.  In this case H(s) is simply an interpolation of the state 
variables onto the point ro.  More generally H can be any linear or non-linear transformation or 



interpolation of the state vector sn.  If H is a linear function of the state variables, then it may be 
written as a K × L array defined by 
 
 dn = H

n
sn        (2) 

 
The background, observations, and transformation function may all contain errors, and in 

general these errors may be correlated to one another.  The expected covariances among the 
errors are assumed to be known, unbiased, and normally distributed.  They are expressed in the 
statistical interpolation formalism by error covariance matrices.  The background error 
covariance matrix is defined in terms of the errors εn

F = sn
F − sn

true  at each grid point by 
 

 P
n

F[ ]
ij

= εn
F ri( )εn

F r j( )    (3) 

 
where the angle brackets denote the expectation operator.  The observation error covariance  
matrix is similarly defined, but includes errors and correlations associated with the function H(s) 
as well as the observations themselves. 

R
n

 
 With these definitions, the statistical interpolation procedure is [Daley, 1991] 
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The vector sn

A is the analyzed state of the system—that is, the most probable set of values given 
the background sn

F, observations dn, and the corresponding error covariance matrices.  The 
matrix K

n
 is a set of weighting coefficients, which essentially determines the statistical 

significance of each observation in dn to the analysis.  The matrix P
n

A is the analysis error 
covariance matrix; it contains the expected errors and correlations associated with sn

A. 
 

The prediction part of the KB-filter is defined by the forecast model.  In the following we 
assume that the evolution of the system from time tn to tn+1 can be represented by a linear matrix 
operator M

n
 acting on the state vector at tn.  The forecast is assumed to be imperfect, with a 

known error covariance matrix Q
n
. Given the analyzed state vector and its error covariance 

matrix, the forecast state and error covariance matrix are given by 
 

 sn +1
F = M

n
sn

A      (7) 
 P

n +1
F = M

n
P

n

AM
n

T + Q
n
   (8) 

 
Equations (4)-(8) provide the governing equations of the data assimilation algorithm in a 

general form.  The next section describes the application of this algorithm to the specific problem 
of modeling radiation belt dynamics. 



 
Model 

 
The Kalman-Bucy filter can be applied to a variety of dynamic systems.  In this section we 

describe the application of a KB-filter to a simple model of radiation belt dynamics. The physical 
basis of the forecast model is briefly outlined, and cast into a computational form consistent with 
the KB-filter equations (4)-(8).  We next discuss the transformation/interpolation of observed 
fluxes onto the model grid, using an estimate of the magnetic field configuration computed by an 
independent model. 
 
Forecast model 
 

The forecast model used in this study considers the phase space density of relativistic (MeV-
range) electrons stably trapped in the radiation belts.  For these particles we assume that the 
adiabatic invariants J1, J2, J3 associated with the particle gyration, bounce, and drift motions are 
approximately conserved, except for small stochastic fluctuations.  Under this assumption the 
evolution of the particle distribution can be represented by diffusion in the adiabatic invariants, 
of the form 

 

 
∂f J1,J2,J3;t( )

∂t
=

∂
∂Ji

Dij
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∂J j

 
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 
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j

∑
i
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Here Dij are diffusion coefficients, related to the expected rate of change in each adiabatic 
invariant.  For simplicity we limit our investigation to equatorially mirroring particles—that is, 
particles with zero second adiabatic invariant, in a magnetic field configuration where the 
minimum field strength along each field line lies in the equatorial plane.  Such particles are 
entirely confined to the equatorial plane, and drift along paths of constant field strength. We 
further assume that diffusion in the first adiabatic invariant and losses (due to collisions with the 
Earth’s atmosphere, e.g.) are negligible, so that the governing equation becomes a simple 1D 
diffusion equation in the third adiabatic invariant.  Using µ for the first adiabatic invariant and 
the Roederer L parameter  in place of the third, the radial diffusion equation is L ∝ J3

−1

 

 
∂f µ,L, t( )

∂t
= L2 ∂

∂L

DLL

L2
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 
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We assume a time-independent diffusion coefficient of the form 
 
           (11) DLL = D0L

n

 
with quiet-time values D0 = 7.905 × 10-12 hrs-1 and n = 11.7 adopted from the study of Selesnick 
et al. [1997]. 
 

Computationally, the diffusion equation is solved in discretized form by the Crank-Nicholson 
numerical method − a semi-implicit approach with second-order accuracy in both space and 
time.  For the interior grid points (l = 2, 3, … , N-1), the distribution at t = tn+1 is defined by 



−α 1− β( )[ ]f l−1
n +1 + 1+ 2α( ) f l

n +1 + −α 1+ β( )[ ]fl +1
n +1 = α 1− β( ) fl−1

n + 1− 2α( ) f l
n + α 1+ β( ) f l +1

n   (12) 

 α =
1
2

D0L
n∆t

∆L( )2 , β =
n − 2( )∆L

2L
     (13) 

 
The end-point values are determined by the boundary conditions.  At the inner boundary of the 
modeling region where L ~ 1, the diffusion coefficient DLL becomes vanishingly small; hence f is 
very nearly constant at the inner boundary, so fl=1

n +1 = fl=1
n .  Since the outer boundary distribution 

is unknown (unless an observation happens to be available), a Neumann-type (zero slope in f) 
outer boundary condition is applied at l = N.  To second order accuracy in space, the discrete 
outer boundary condition is thus 
 
 3 fN

n +1 − 4 fN−1
n +1 + fN−2

n +1 = 0        (14) 
 
The discretized governing equations and boundary conditions can be conveniently summarized 
in matrix form.  Writing the set of value [fl

n, l = 1,2, …] as the column vector sn, we have 
 
 Asn +1 = Bsn           (15) 
 
or, equivalently, 
 

 
sn +1 = M sn

M = A−1 B
          (16) 

 
The square matrices A and B are nearly tridiagonal, with interior elements defined by equation 
(12), and first and last rows defined by the boundary conditions. 
 

The set of phase space densities f, defined on a grid of discrete values of µ and L, represents 
the state-vector characterizing the configuration of the system.  The discretized radial diffusion 
operator and boundary conditions of equations (12)-(16) form the forecast matrix Mn in equation 
(7).  This matrix completely describes the evolution of the phase space density distribution over 
time, given an initial state. 
 

The KB-filter additionally requires an initial estimate of the state at tn=0, and error covariance 
matrices associated with both the initial state and the forecast model.  In the test simulations 
described below, the initial distribution function is specified arbitrarily, and the errors associated 
with it are assumed to be large and uncorrelated.  Since the forecast error covariance matrix is 
continuously modified with each data assimilation cycle (equations (6) and (8)), the algorithm is 
not especially sensitive to its initial value.  The forecast error covariance matrix Q is somewhat 
more complicated: it represents both errors in the discretization of the forecast equation (10), and 
variations in the true system that are not represented by the forecast equation.  These errors of 
representativeness are difficult to quantify.  In the present study we make the simplest possible 
approximation, in which the expected forecast errors are uncorrelated and equal to a constant. 

 



Spatial analysis 
 

The analysis portion of the KB-filter requires a set of observations dn and a transformation 
function Hn(sn) for each time tn  For our model system the observations are taken to be 
measurements of differential directional flux at discrete energy levels, obtained at regular 
intervals along the orbit of a spacecraft confined to the equatorial plane.  The differential 
directional flux j of particles with momentum p is simply related to the phase space density by  

 
            (17) j = p2 f
 

Since the forecast model operates in an adiabatic invariant coordinate system rather than 
physical space, it is necessary to determine the adiabatic invariants associated with each 
observation.  These quantities depend on the configuration of the magnetospheric magnetic field.  
For a given observation position r and kinetic energy E (or corresponding momentum p), they 
are given by 

 

µ =
p2

2mB(r)
          (18)  

 
 

 L = 2πB0RE
2Φ−1, where   Φ = B(r) dA

drift path
∫∫   (19) 

 
The magnetic field configuration must be supplied by another model, and is considered an 

input to the assimilation model.  In principle, any magnetic field model, whether empirical, 
theoretical, or even a simple dipole field, can be used.  However the likely error (and error 
correlations) associated with the model must be estimable, as these are also input to the spatial 
analysis algorithm. In this study we presuppose a magnetic field model that provides the 
magnetic field strength B, the L parameter, and the associated error covariances for any input set 
of positions r in the equatorial plane 
 

Given estimates of µ and L corresponding to the observation, the function H becomes a two-
dimensional interpolation onto the model grid.  For simplicity we use a bilinear interpolation of 
the form 

               (20) Hml (r,E) = p(E)2cm (r,E)dl (r)
 

The coefficients c and d are given by 
 

 cm (r,E) =

µm+1 −µ(r,E )
µm+1 −µm

, µm ≤ µ(r,E) < µm +1

µ(r,E )−µm−1
µm −µm−1
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0 , all other m
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  (21) 

 
The final element needed for the KB-filter is the observation error covariance matrix.  This 

matrix has two components: covariances associated with the instrument error of the observing 



satellite, and error covariances produced by the transformation function H.  In the following we 
assume that instrument errors are known and uncorrelated.  The errors associated with the 
transformation function are assumed to be dominated by errors in the values of µ and L 
computed by the magnetic field model.  The error εH in H is related to the errors εµ and εL to first 
order by 

 

 εH r,E( ) ≈ p(E)2 ∂f

∂µ µ(r,E )

εµ (r,E) +
∂f

∂L L(r )

εL (r)
 

 
 
 

 

 
 
 
            (22) 

 
The observation error covariance matrix is then constructed from the covariances among the εH 
for each energy channel and position of the observation set, together with the expected error 
variance of the observed fluxes. 
 

Simulated Storm 
 

In order to test the data assimilation algorithm, a simple scenario was constructed, in which a 
storm-time enhancement of the outer radiation belts is observed by a single spacecraft traversing 
the radiation belts.  While not necessarily realistic, the use of fabricated data in this testing 
procedure allows us to control and simplify the behavior of the system, to more easily identify 
the response of the assimilation algorithm to various factors.  Furthermore the simulated system 
provides a global picture of the “true” evolution of the system, against which the assimilation 
algorithm can easily be compared. 
 

The observing system in this simulation is a single satellite measuring differential directional 
flux in ten channels of kinetic energy E = 1, 2, 3, …, 10 MeV.  The satellite lies in the equatorial 
plane, on an elliptical orbit with 24-hour period.  The satellite’s orbit crosses a wide range of L 
shells, from L ~ 1.2 to beyond the outer modeling boundary L = 10, as shown in figure 1.  
Satellite measurements are computed and delivered to the assimilation algorithm once per hour; 
measurements beyond the modeling boundary are simply ignored.  The fluxes measured by the 
satellite are computed from the true phase space density distribution and magnetic field 
configuration described below. 

 
Figure 3.  Orbital path (in magnetic equatorial plane) of satellite providing data during the 

simulated storm.  Black squares indicate the spacecraft’s position at 6, 12, and 18 hours 
from perigee.  The orbital period is 24 hours. 



 
The simulated environment consists of a simple magnetic field model, and a time-dependent 

phase space density distribution. The initial phase space density was chosen to be constant in L, 
with a simple power-law dependence in µ given by f ∝ µ-5.  The magnetic field model consists of 
the Earth’s dipole field  BD (with zero tilt) and a time-dependent symmetric ring current BRC, 
parameterized by the field depression Dst at the equator: 

 
 B(r, t) = BD (r) + Dst(t) BRC (r)       (23) 

 BD =
B0RE

3

r3 , BRC =
r − r0

1− r0

       (24) 

 
Over the course of the 10-day simulation period, the system underwent a “storm” in which 

the ring current became stronger, and phase space densities at the outer boundary of the 
modeling region at L = 10 were enhanced by an order of magnitude for all values of µ.  The time 
variation of the ring current parameter and outer boundary condition over the course of the 
simulation are shown in figure 2. 
 

 
Figure 2.  Time-variation of the simulated storm parameters Dst and FBND, as described in 

the text. 
 

The enhancement of phase space density at L = 10 was propagated inward to low L by the 
radial diffusion defined in equations (10) and (11), with Dirichlet rather than Neumann outer 
boundary conditions.  Figure 3 depicts the evolution of the phase space density at µ = 5623 
MeV/G as a function of L and time over the course of the simulation.  In this simulation the 
evolution at other values of µ is identical. 

 



 
Figure 3.  Contours of phase space density at µ = 5623 MeV/G vs. L and time, for the true 

(simulated) electron population. 
 

Results 
 

The data assimilation algorithm described in sections 2 and 3 was used to model the response 
of the radiation belt electrons to the simulated storm described above.  The correct initial 
distribution at the beginning of the event was supplied to the assimilation model, in order to 
better illustrate the model’s ability to capture dynamic changes to the system. 
 

The model computes changes in phase space density at each time step by solving the radial 
diffusion equation with Neumann boundary conditions.  Since the initial distribution is constant 
in L and therefore a steady state solution to equation (10), the forecast model predicts absolutely 
no change in the phase space density over the course of the simulation, in the absence of 
assimilated data. 
 

We first consider an idealized case in which perfect data is supplied to the assimilation 
algorithm.  That is, the fluxes measured by the satellite each hour correspond exactly to the 
correct phase space density distribution, and the magnetic field model provides a perfect 
transformation from spatial to adiabatic invariant coordinates.  In this case the observation error 
covariance matrix R

n
 in equation (5) is a null matrix.  The assimilation model is not without 

error, however, because the satellite provides the correct phase space density only for a few 
values of µ at a single value of L at each time step.  The spatial analysis must spread these 
discrete points of data over the entire (µ,L) grid, and it does so with errors given by equation (6). 
 

Figure 4 shows the predicted phase space density at µ = 5623 MeV/G over the course of the 
storm, in the same format as that of figure 3.  At this value of µ the assimilation does an 
admirable job of reproducing the correct behavior of the system.  The discontinuous changes in f 
that appear periodically reflect the assimilation of new measurements from the satellite.  The 
cadence is approximately 12 hours because the value of µ corresponding to a given energy 
channel depends strongly on the magnetic field strength, and therefore on the position of the 
satellite.  Thus the phase space density at µ = 5623 MeV/G, which corresponds to ~ 2 MeV at L 
~ 6.6, is sampled by the satellite in tightly clustered groups around L ~ 5-7 on each inbound and 



outbound pass.  Results similar to those in figure 4 are obtained over a wide range of µ, from ~ 
103 to 105 MeV/G. 

 

 
Figure 4.  Assimilation model results with perfect observations, in the same format as 

figure 2. 
 
     The spatial analysis algorithm can be quite effective in inferring the complete distribution in L 
from only a few well-placed measurements.  However the success of the assimilation algorithm 
depends strongly on the location of those measurements.  Since the observed µ is largely a 
function of observing position, the model is much less successful at reproducing the phase space 
density at extreme µ values.  Figure 5a shows the predicted phase space density at µ = 177.8 
MeV/G (the true distribution is nearly identical to figure 3, with the values corresponding to each 
color offset).  The satellite’s 1-10 MeV energy channels sample this low µ only at large values of 
B corresponding to positions Earthward of L ~ 3, where the true distribution remains virtually 
constant over time.  The storm-time ring current exacerbates this problem by decreasing the field 
strength in the inner magnetosphere, pushing the sampling range even closer to the Earth.  Thus 
the assimilation fails to capture most of the dynamic changes to the system.  Only late in the 
event, when the ring current has largely subsided, does the satellite begin to sample this value of 
µ.  A similar behavior is seen at very large µ, as shown in figure 5b.  The spacecraft samples µ = 
106 only when B is less than ~30 nT.  Again the satellite encounters this range of B only after the 
ring current (which increases the field strength in the outer magnetosphere) has subsided. 



 

 
Figure 5.  Same as figure 4, at (a) µ = 177.8 MeV/G, and (b) µ = 106 MeV/G. 

 
We next consider the effects of various kinds of error on the assimilation results.  Figure 6 

displays the predicted phase space density at µ = 5623 MeV/G, for an assimilation in which two 
types of observational error are simulated.  The first is an error in the measured flux, simulated 
by randomly perturbing the correct value.  The second is an error in the magnetic field model 
used to calculate the µ and L values corresponding each observation’s position and energy 
channel.  The magnetic field errors are generated by randomly perturbing the value of Dst in 
equation (23), and by adding random, spatially uncorrelated field fluctuations with a spatial scale 
of 1 RE.  The random variations added to the flux, Dst, and the perturbation field are all normally 
distributed, with standard deviations of 10%, 10 nT, and 5 nT, respectively.  These expected 
errors are considered known in the assimilation algorithm, and contribute to the observation error 
covariance matrix R

n
. 

 
Figure 6.  Same as figure 4, with errors in the observed fluxes and magnetic field. 

 
The effect of these errors is evident in the noisy, patchy distribution shown figure 6 

(compared to figure 4, for which no errors were included), but the overall picture remains 
reasonably faithful to the true distribution (figure 3).  Errors at low L are especially noticeable 
for two reasons.  First, the magnetic field strength is large at low L, so only measurements in the 



highest energy channels sample µ = 5623 MeV/G.  Thus there are fewer total observations at low 
L.  Second, diffusion is very slow in this region, so errors introduced at a particular (µ, L) tend to 
persist until repeated measurements at the same values become available.  Random fluctuations 
in the magnetic field make repeated sampling of the same (µ, L) an unlikely event. 
 

In figure 7, the effects of errors in the forecast model are shown.  Here there are no errors 
associated with the observations or the magnetic field, but the diffusion coefficient defined by 
equation (11) is made to be artificially large, scaling as L13 rather than L11.7.  In this model the 
diffusion coefficient is not modified in the data assimilation cycle, so the forecast consistently 
overestimates the rate at which enhancements in the phase space density propagate to lower L.  
The observations, however, continually correct this error, creating a sawtooth pattern in the 
evolution of the enhancement’s leading edge over time.  The resulting distribution is still 
reasonable, but by the end of the simulation the enhancement has moved too far Earthward by a 
margin ∆L ~ 1.0. 

 

 
 

Figure 7.  Assimilation results at µ = 5623 MeV/G, with errors in the forecast model 
diffusion coefficient. 

 
Conclusions 

 
This paper illustrates the application of data assimilation techniques —specifically the 

Kalman-Bucy filter—to a physics-based model of radiation belt dynamics.  A rudimentary 
assimilation consisting of a single observing spacecraft and a simple forecast model was 
compared to the prescribed evolution of the radiation belts during a simulated magnetic storm, 
with encouraging results.  The assimilation of even small amounts of data can markedly improve 
a forecast model, if the observations are fortuitously placed in regions of high uncertainty.  When 
the physics underlying the forecast model is sufficiently realistic, and the errors well known, the 
spatial analysis algorithm is able to infer the global distribution of the phase space density from 
these sparse observations with remarkable accuracy.  The assimilation model is fairly robust, in 
that random errors in the observations, magnetic field model, and/or forecast models do not 
drastically degrade the predicted distribution —provided that the expected errors are accurately 
represented in the KB-filter formalism. 



 
The development of a realistic radiation belt forecast model will require further research on a 

number of different fronts.  First, the 1D forecast model described above is far too simplistic.  It 
neglects much of the known physics governing the radiation belts, such as losses due to pitch-
angle scattering into the loss cone, acceleration mechanisms such as ULF-drift resonance, and 
variations in the radial diffusion coefficient with time and µ.  The application of the KB-filter to 
a more realistic dynamic model will require careful assessment of the errors and correlations 
associated with each facet of the model. 
 

A realistic assimilation model will also require a far more sophisticated representation of the 
magnetic field.  The one-parameter, azimuthally symmetric field model used above is clearly a 
poor representation of the magnetosphere.  Fortunately there already exist advanced, data-based 
models of the magnetospheric magnetic field (e.g., Tsyganenko, 2002), which can be readily 
adapted to the assimilation model described here.  However, as with the forecast model, the 
errors and correlations associated with the selected magnetic field model must be reliably 
estimated. 

 
Finally, the assimilation model must be tested will actual data.  This will require realistic 

estimation of the instrument error and background noise level associated with each measurement, 
and a careful selection of events based on data availability.  In particular, the assimilation must 
be tested on events in which at least two independent sets of observations are available, so that 
the accuracy of the model can be assessed. 
 

The work presented here represents a preliminary step toward assimilative modeling of the 
radiation belts.  While the development of a fully realistic assimilation model faces a 
considerable number of challenges, the results presented here demonstrate the potential of the 
assimilation techniques employed here to significantly improve the specification and forecasting 
capabilities of dynamic models. 
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