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Abstract 
 

This work explores the possibility of using carbon nanofibers to create improved versions of 
antistatic and conductive polyimide (e.g. Kapton) for use in satellite charge control and 
dissipation.  Carbon nanofibers have superior properties making them a candidate for this 
application, including very small diameter (to fit within a thin film), high aspect ratio (to form a 
network), moderate electrical conductivity, and excellent dimensional stability.  Nanofibers in 
the diameter range from 60 – 200 nm (as distinct from smaller nanotubes) are now available 
relatively cheaply and in quantity.  The primary challenge in making polyimide films is 
achieving adequate dispersion of nanofibers.  This is complicated both by the fact that the 
nanofibers are entangled as produced, and that they are not naturally well wet by the polymer, 
causing them to agglomerate during processing prior to polyimide film casting.  This paper 
describes methods for surface modification of nanofibers, as well as size separation of nanofiber 
agglomerates, to promote adequate dispersion in polyimide.  Conductivity data on cast nanofiber 
filled polyimide films are also presented.   
 

Introduction 
 

In order to help mitigate differential charging on spacecraft and satellites, improved polymer 
materials are needed with electrical conductivity that is both sufficient to bleed charge and stable 
under temperature excursions typical to the orbital environment.  The conductivity must be 
added without degradation of mechanical properties or increase in the material weight.  
Conductive versions of polyimide or teflon would be particularly useful.   

 
Polyimide filled with carbon black is currently available.  However, because carbon black is 

characterized by low aspect ratio particles, relatively high loadings are required to obtain a given 
level of conductivity, potentially compromising mechanical properties of the host polymer.  
Also, the materials are subject to electrical conductivity reduction or failure during relatively 
mild temperature excursions as thermal expansion of the matrix polymer pulls the conductive 
particles out of contact.  Such failure may also occur under non thermally induced strains. 
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The work reported on here seeks to employ low cost carbon nanofibers to create improved 
forms of carbon filled polyimide.  The high aspect ratio of the nanofibers is conducive to 
formation of a conductive network that both achieves a given level of conductivity at lower 
loading than is possible for low aspect ratio particles, and is less susceptible to disruption during 
thermal or mechanical expansion of the matrix.   The primary challenges in crafting such a 
material include achievement of good dispersion of the nanofibers, and creation compatibility 
between the nanofiber surface chemistry and the polymer processing chemistry. 
 

Carbon Nanofibers 
 

The carbon nanofibers used in this work were Pyrograf-III.  The diameter of this nanofiber 
is typically in the range from 60 – 200 nm, with a length of 10 – 100 microns, and thus an aspect 
ratio in the range of 150 – 1500.  The morphology of this nanofiber is that of stacked graphitic 
cones (as opposed to concentric graphitic cylinders, characteristic of multiwall nanotubes), as 
shown in Figure 1.  Note that the graphitic planes do not run parallel to the fiber axis (indicated 
by a long white arrow), but are tilted at an angle.  It is possible for the nanofiber to have a 
chemical vapor deposition (CVD) of carbon on the surface (as indicated in the figure).  However 
the nanofibers used in the current effort typically do not.  While the face of a graphitic plane can 
be a very inert surface that is difficult modify without damage to a nanofiber/nanotube, the 
exposed edges of these planes typical of Pyrograf-III can allow more freedom for chemical 
modification to tailor the nanofiber for compatibility with specific polymers and polymer 
chemistries. 

 

 
 

Figure 1.  Morphology of Pyrograf-III carbon nanofibers. 
 

Nanofiber Dispersion 
 

A key to achieving the best performing materials is to obtain the best possible dispersion of 
carbon nanofibers.  This is a particular challenge for carbon nanofibers because they form 
entangled bundles during their growth process, and because the same property that allows them 



to form a conductive network at low volume, their high aspect ratio, also makes it difficult for 
them to move past one another to become disentangled.  (Indeed, some aggressive methods to 
achieve dispersion do so by reducing the aspect ratio, which is detrimental to the desired goal.)  
Truly monodisperse nanofibers may be extremely difficult to achieve, and often the best one can 
strive for is to minimize the size of entangled groups of nanofibers.  Such minimization of 
bundle diameter is especially important for polyimide films, which are typically less than 4 mils 
(100 microns) thick.  In these materials, a large nanofiber bundle is not just inefficiently 
dispersed, but actually represents a visible flaw in film, compromising its mechanical integrity. 

 
Three methods have been used to minimize nanofiber bundle diameter and achieve better 

dispersion: ultrasonic agitation, a chemical method for sorting nanofiber bundles by size, and 
chemical modification of the nanofiber surface to promote solvent compatibility. 

 
Ultrasonic agitation was somewhat effective improving nanofiber dispersion and reducing 

nanofiber bundle size.  Table 1 shows an example of how the distribution of bundle diameters 
changes for nanofiber suspended in water as a function of sonication time.  The “mean” column 
gives the bundle diameter, in microns, that represents the 50th percentile of those in suspension.  
The “d10” and “d90” columns given the diameter for the 10th and 90th percentiles, respectively.  
“d99.9” indicates the maximum observed bundle diameters.  One can see that sonication reduces 
the bundle diameters at all percentiles.  One also observes that the accessible surface area of the 
nanofiber increases as the nanofibers are dispersed.  Importantly, the size of the largest bundles 
is greatly reduced.  Ideally, the maximum bundle diameter should be below 20 µm for casting of 
high quality polyimide films.  Sonication alone is not sufficient to achieve this goal. 
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                                     Table 1. Example of nanofiber bundle diameter distribution vs. sonication time.
Sonication time 
(min) 

d10 
(µm) 

Mean 
(µm) 

d90 
(µm) 

d99.9 
(µm) 

Surface Area 
(cm2/cm3) 

0 13.61 48.56 98.67 145.00 2,569 
1 5.79 18.58 29.06 45.24 7,397 
5 4.44 16.92 24.84 37.47 9,008 
10 3.89 16.18 23.68 36.90 10,651 

∞ (projected) ~3 ~16 ~23 ~35 ~12,000 

A second method for reducing bundle diameter in the final material is to sort the larger 
ndles out of the mix at the start.  This can be done by a chemical process in which the 
nofiber is treated with starch.  The starch attaches to the outside of the nanofiber bundles and 
cilitates their suspension in water.  This sets up a competition between the starch working to 
ld the fiber bundles in suspension, and gravity.  Only smaller bundles, with a higher surface to 
lume ratio, and therefore a larger proportion of starch, are able to stay in suspension.  Large 
ndles precipitate and can be removed before further processing.  The starch can then be easily 
moved from the nanofiber that is retained in suspension.   

 
Table 2 shows an example of nanofiber bundle diameter distributions after a starch sorting 

ocedure.  Here we see that the diameter distribution is improved at all percentiles relative to 
sonicated nanofiber, and in particular there the size of particles at and below the 10th percentile 
much smaller than even for the most sonicated nanofiber.  The accessible surface area is 



concomitantly increased.  There still remain a small percentage of larger diameter bundles, but 
these seem to be more readily broken up by sonication than those that have not received the 
starch treatment, as evidenced by the last line of the table.  (Presumably, these are bundles of 
nanofibers that are less densely packed than others.  Such bundles would allow starch to 
penetrate toward their center, giving them a high proportion of starch and better tendency toward 
suspension.  Also, such loosely packed bundles would more easily fall apart during sonication.)  
The combination of the starch and sonication treatments appears to reduce all bundle diameters 
below the 20 µm  limit for high quality films. 

 
 Table 2.  Example of nanofiber bundle diameter distribution after starch treatment.

Sample Treatment d10 mean d90 d99.9 Surface Area 
Starched 0.61 18.3 76.4 86.4 28,558 

Starched and Sonicated 0.52 5.5 10.1 14.7 39,135 
 

Finally, dispersion can be enhanced by treating the nanofiber for maximum compatibility 
with the solvent needed for casting the given polymer system.  Polyimides, such as Kapton, are 
typically cast from a chemistry that starts with the polymer dissolved in dimethylacetamide 
(DMAc) or similar solvent.  The carbon nanofibers must also be suspended and dispersed in the 
solvent.  As grown, the nanofibers are incompatible with DMAc and tend to precipitate out in 
larger agglomerates.  To overcome this, the surface must be functionalized with carboxylic acid 
groups (COOH).  This can be accomplished by wet treatment with sulfuric and nitric acid, which 
can put up to 20 atom % of oxygen, primarily in the form of carboxylic acid, on the nanofiber 
surface.  Somewhat lesser, but still sufficient, amounts of oxygen can added by proprietary 
alkaline wet chemistry or in situ modification of the nanofiber growth process.  The latter two 
methods are more amendable to large scale production than the acid based treatment.  Nanofibers 
treated by the above methods were found to suspend readily in DMAc, and to disperse far better 
than untreated nanofiber. 
 

Polyimide Film Casting and Properties 
 

A 75 micron (3 mil) thick film cast in a Kapton-like material with 16.7 % carbon 
nanofibers by weight was adequately strong (as determined by qualitative inspection), and had an 
electrical conductivity of 70 Ω/square (equivalent to a bulk resistivity of 0.5 Ω-cm).  This 
material was cast from a solution in DMAc. 

 
A similar effort in a polyamic acid derived polyimide resulted in a sample with resistivity of 

approximately 30 Ω/square.  The mechanical properties of this specimen were also acceptable.  
This material, with a ketone linkage rather than the ether linkage typical of Kapton, was cast 
from a solution of  n-methyl pyrrolidone (NMP). 

 
The electrical performance of these films is superior as compared to Du Pont’s current 

version of conductive polyimide, Kapton 275XC, which has a conductivity of 230 to 290 Ω/sq.  
It is apparent that there is latitude to work at lower nanofiber volume fraction (which could have 
mechanical benefits) and still obtain improved electrical performance over the state of the art.  (It 
should be noted that the Kapton film was not cast with the best nanofiber dispersion so far 



observed, and it is possible that further gains in performance will result when a more uniform 
film is cast from a suspension containing smaller nanofiber agglomerations.) 

 
Additional casting efforts are underway to study higher and lower loadings of nanofibers, and 

to extend into other polyimide materials, such as bis analine M, and oxydianaline. 
 

Conclusion 
 

While this remains a work in progress, with much of the parameter space yet to be examined 
and some improvements in the degree of nanofiber dispersion desirable, it appears that carbon 
nanofibers can indeed be the basis for an improved family of conductive polyimide materials, 
giving specific levels of conductivity at lower loading fractions than carbon black based 
materials. 
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