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Abstract 

 
A degradation test for a solar array coupon against ESD was performed under simulated 

Low Earth Orbit environment. All tests were performed in a vacuum chamber with a plasma 
source. A test coupon was biased at -400V with the aim of developing the next generation 
400V high voltage solar array. The LCR circuit was used in order to simulate the arc current 
that flows by gathering the charge stored on coverglasses. Tests were repeated until the solar 
array coupon was damaged. The arc locations and waveforms of both current and voltage 
were detected for all the arcs during the tests. The electrical performance of the coupon was 
measured after every test without opening the vacuum chamber. Many arcs occurred and 
caused the cell degradation. The cell was damaged by only one arc that occurred at the edge 
of cell, not at electrodes. 

 
Introduction 

 
The spacecrafts, such as satellites and space station, have larger structures and longer 

lifetimes year after year. These spacecrafts need a large amount of the electric power genera-
tion, nowadays up to several kW power level. The International Space Station (ISS) can gen-
erate 65kW electric power. The higher bus voltage is indispensable for the large spacecrafts 
to reduce both the increase in power line’s weight and the power loss resulting the joule 
heating due to the increase in electric power generation. The bus voltage over 100 V is em-
ployed for the kW class spacecrafts, and the output voltage of the solar array becomes over 
100 V. In the case of ISS, the electric power is generated at the voltage of 160 V by the solar 
array, and is transmitted at 120 V. In near future, the electric power will increase when the 
lager spacecrafts appear. Taking into account that the bus voltage is generally proportional to 
the square root of the electric power, the spacecrafts generating the 1 MW class electric 
power need the output voltage of about 400 V. 

 
The negative end of the solar array is connected to the spacecraft body in many space-

crafts. Under the Low Earth Orbit (LEO) environment, the space plasma, whose density is on 
the order of 1010~1012 m-3, can charge the spacecrafts at the negative potential with respect to 
the plasma, because of electron’s higher velocity than ions. When the positive end of the so-
lar array has the same potential as the ambient plasma, the spacecraft body and the negative 
end of the solar array have the negative potential equal to the voltage in power generation. 
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face has almost same potential as the plasma though most part of the spacecraft has the nega-
tive potential with respect to the plasma. After arcing, the charge stored in the capacitance 
between the spacecraft and the plasma is discharged, and the spacecraft potential rises up to 
the plasma potential. Then the coverglass surface becomes positive against the plasma. The 
arc plasma spreads from the arc site with neutralizing the charge on the coverglass. This neu-
tralization of the coverglass charge is observed in the ground tests. The maximum size of the 
coupon used for such an experiment is 1m square because of the spatial limit of the experi-
mental facility on the ground [5]. For real space use, in the case of ETS-VIII which generates 
8 kW at 110V for example, one wing of the solar array is about 10 m in length [6]. The solar 
array operating at 1MW at 400V will have a large number of solar cells and a huge area. 
Many coverglasses exist (capacitance) on this large area of the solar array and can supply a 
lot of charge to the arc plasma in arcing. It is important for the degradation test to estimate 
the charge supplied from the coverglasses, since it is thought that the degree of the cell dam-
age due to arcing depends on the amount of the charge flowing to the arc site. Then we esti-
mated the amount of the charge neutralized by the arc plasma on the basis of the experimen-
tal result [7]. 

 
In this experiment, it was observed that the arc plasma could neutralize the charge stored 

on the film which simulated the coverglass and was placed at 4m far from the arc site. 
Therefore it was assumed that the arc plasma could neutralize the charge of the coverglass 
within 4m from the arc site [7]. It was also assumed that the ratio of the neutralized charge to 
the total charge stored on the coverglass, γ c , was 100% at the arc site, and was inversely 
proportional to the distance from the arc site, r, and was 0% at 4 m from the arc site. The ve-
locity of the arc propagating with neutralizing the charge on coverglass was  m/s 
from the experimental result. We also put the capacitance of the coverglass to C

7 ×104

cg=286.5 
nF/m2. 
 

The charge on the coverglass is neutralized radially at the velocity, v, from the arc site. 
The charge, Ccg|∆V|, is stored on the coverglass per unit area before arcing, where ∆V is the 
potential difference between the coverglass and the cell. We put that γ c =1− 0.25r  on the 
condition, γ c =0 at r=4 m, where r represents m in unit. The time duration from the begin-
ning of arcing is t s. We also put the charge neutralized at r during dt to dC, and from r = vt , 
the discharge current, I, is 

I =
dC

dt
=

(π (r + dr)2 −πr2)Ccg ∆V γ c

dt
    (1) 

      ≅ 2πrCcg ∆V γ c

dr

dt
            (2) 

= 2πCcg ∆V v 2t(1− 0.25vt)       (3) 
Substituting the value of the constant, we have 
I = 3.52 ×106 t(1−1.75×104 t), A              (4) 
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Experiment 
 
Solar array coupon 
 

The picture of the solar array coupon used in the experiments is shown in Fig. 4. This 
coupon is the basic design for the 100 V solar array used currently in the space. The substrate 
is 25 mm aluminum honeycomb which is covered with Carbon Fiber Reinforced Plastics 
(CFRP), and the top of the substrate is covered with the Kapton film. The twelve silicone 
cells (70mm 35mm) are glued on the Kapton film. Four cells are connected in series by the 
interconnectors. The electrodes of both end of the series connection are called the bus bars. 
Three parallel connections are called as R, B, G strings, respectively. We also call the cells by 
the numbers as shown in Fig. 4. The cells have IBF (Integration Bypass Fumction), which 
allows the current flow from N to P electrode in the cell even if the cell can not generate the 
electric power. The gap between strings are glued by RTV (Room Temperature Vulcanizing) 
silicone rubber to prevent the sustained arc [8, 9]. 
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Figure 5.  Experimental setup. 

 
Measurement system 
 

The sketch of the measurement system is shown in Fig. 5. The experiments were per-
formed in a vacuum chamber, which was 1 m in diameter and 1.2 m in length. The pressure 
in the chamber could reach up to about 5×10-4 Pa, and was 1×10-2 Pa during the experiments. 
The plasma was produced by an ECR plasma source [10]. The plasma density around the 
coupon was about 5 10× 12 m-3 and the electron temperature was about from 3 eV to 7 eV with 
xenon gas of 2×10-8 kg/s. The coupon was kept at 40 ºC by an IR lamp to simulate the tem-
perature on orbit during the experiment. 

 
The arc location on the coupon was identified by a position identification system of arc 

discharge [11]. During the experiments, the video image of the coupon was recorded in a 
hard disk drive connected to a PC as the digital video image. After the experiments, the arc 
location was identified by means of analyzing the digital video image with a computer pro-
gram in the PC. 

 
All waveforms of the array potential and the discharge current were acquired by a high 

speed data acquisition system [12]. This system consists of a high speed data acquisition 
board, a PC, and a LabVIEW program, and can record the waveforms within about 30 ms 
intervals after a waveform is recorded. This system can also perform the real-time recording 



and display of the peak, the amount of charge, and the pulse width of the discharge current.  
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The circuit used in the experiments is shown in Fig. 2. Here the current probes, CP1 and CP2, 
were HIOKI 3274 (DC ~ 10 MHz). The current supplied from the capacitance C was meas-
ured by measuring the potential of R using the differential probe DP. 
 

The metal halide lamp mounted in the chamber enabled to acquire the electrical perform-
ance of the coupon without opening the chamber during the experiments. The electrical per-
formance was acquired in each string by means of measuring both the output voltage and 
current with shifting the value of resistance connected to the string (VI characteristics). The 
example of the VI characteristic is shown in Fig. 6. The output power is also shown in this 
figure. The maximum power gives the electric per-
formance of the strings. The illumination of this 
lamp was 19000 lx at the center of the coupon. The 
plasma source was stopped during the VI measure-
ment. The VI curve was corrected by the coupon 
temperature, which was measured simultaneously, 
since the electric performance of the solar cell de-
pended on its temperature. 

Table 1 Test conditions. 
Work gas Xe 

Mass flow rate 0.2 sccm 
Plasma density 5 10× 12 m-3 

Chamber pressure 9.7 10× -3 Pa 
Neutral density 2.3 10× 18 m-3

Bias voltage -400 V 
Array temperature 40 ºC 

External capacitance 5 µF 

 
Result and discussions 
 

The experimental condition is listed 
Table 2.  Experimental result. 
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Number of arcs Case Experimental
duration, s Total Electrode Cell edge

1 100 53 53 0 
2 62 29 29 0 
3 26 18 18 0 
4 40 28 26 2 
5 39 25 23 2 
6 78 41 38 3 
7 37 18 18 0 
8 76 34 30 4 
9 55 26 19 7 
10 52 23 15 8 

Total 565 295 269 26 

Figure 7.  Position of arc. 



in Table 1. The work gas of the plasma 
source was xenon, and the plasma density at 
the center of the coupon was about 5×1012 
m-3. Table 2 shows the experimental result, 
and Fig. 7 shows the arc location on the 
coupon during the experiments. The coupon 
was biased at –400 V in the plasma envi-
ronment. The experimental case contains 
about 20 arcs, and was repeated until the 
coupon was degraded. After each experi-
mental case, the electric performance was 
acquired by the VI measurement without 
opening the chamber. The 10 cases were 
performed totally, and the total experimental 
time was 565 s, the total number of arcs was 295. T
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Figure 9.  Position of arcs.



 
The peak of the output electric power measured after every case was shown in Fig. 8. The 

maximum power was normalized by the value measured before the experiment. The maxi-
mum power did not change in any strings by case 5. After case 6, the R-string showed degra-
dation of electric power. After case 9, the G-string suffered the degradation of 20 %, and then 
suffered moreover the 20 % degradation after case 10. After all, the total power degradation 
was 40 % in the G-string. 
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Figure 10.  Microscopic picture at the cell edge. 

 
The arcs occurred at the side edge of the cells in both R and G-strings, when the electric 

power of the strings was degraded. The distributions of the arc location in the cases 4, 5, 6, 8, 
9, and 10, which had the arcs occurred at the side edge of the cells, are shown in Fig. 9. In the 
cases 4 and 5, three arcs occurred at the cell edge between the cells No. 2 and No. 3 in the 
R-string. In case 6, an arc occurred at the same position as cases 4 and 5, and at the top of the 
cell No. 1 and 3 in the R-string, respectively. No arc at the cell edge except for the cell edge 
between the cells occurred until case 6, and no degradation also occurred until case 6. In case 
8, the cells were not degraded, though 4 arcs occurred at the cell edge between No. 1 and No. 
2 in the B-string. In case 9, 7 arcs occurred in the G-string totally at the cell edge between No. 
2 and No. 3, and at the bottom edge, and then the cells were degraded. In case 11, the arcs 
occurred in the G-string at the cell edge between No. 1 and No. 2, between No. 2 and No. 3, 
and at the bottom edge of both No. 1 and No. 2., and then the electric performance decreased 



moreover. It was verified that the arcs at the 
electrode exposed to the space did not de-
grade the cells, however the arcs at the side 
edge of the cells could degrade the cells. 
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Figure 10 shows the microscopic picture 

of cells that had arcs at their side edge. Each 
position of the cell edge was named as (a) ~ 
(e). The P electrode was melted out of the 
backside of the cell in the case of arcing at 
the cell edge. When the arcs occurred at the 
exposed electrode like the interconnector, 
there was no such an arc track.  Figure 11.  Waveform of the arc de-

grading the cell.  
At most of the positions where the arcs 

occurred at the cell edge between the cells, 
the cell seems to be connected to the adja-
cent cell by the arc site. If the P electrodes of 
the backside of the cells are short-circuited 
each other, the P and N electrodes are 
short-circuited in one cell, and this leads to 
the decrease in electric power. The arc sites 
between the cells were observed in all 
strings. To clarify whether two cells were 
short-circuited or not, the resistance was 
measured between the adjacent cells, No. 1 
and No. 2 in the G-string. The three intercon-
nectors connecting two cells were cut in order to measure the resistance. The result showed 
that the insulation was kept between the two cells. From this result, the decrease in electric 
power resulted from the short-circuit of the PN junction in the cell. 

Electrode Current leakage
Cell

Figure 12.  Microscopic picture of 
current leakage point. 

 
In case 6 which the R-string was degraded in, the arcs occurred at the top edge of the cells 

besides at the gaps between cells. As shown in Fig. 10 (a), an arc site attached at the top edge 
by the arcing at the cell edge. The parallel lines in this picture were the N bar electrodes at 
the cell surface, and were insulated from the space by the coverglass. In Fig. 10 (a), the N 
electrode seemed to be connected to the cell edge by the arc site. In the R-string, such an arc 
site from the N electrode between the coverglass and the silicon was observed only in Fig. 10 
(a). In the B-string, there was no arc site like this. 
 

In the G-string, both the power degradation and the arcing at the cell edge occurred in 
cases 9 and 10. The arc sites like Fig. 10 (a) were also observed in the G-string, one arc site 
in the cell No. 1, and five arc sites in No. 2. The position of the current leakage in the cell 
was identified. 
 

At first, in the G-string, the degraded cells were identified by measuring the open-circuit 
voltage (Voc) of each cell with exposing one cell to the light and shading the other cells. The 
Voc of the cells No. 1 and 2 was about the one tenth of the other cells, and these cells were 
identified as the degraded cells. This result was consistent with the arcs occurring at the cell 
edge of these cells. 
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charge stored in the external capacitance 
before arcing, Q0. If the Q0 is large, the Imax 
becomes large, too. In the case of the arcs at 
the electrodes, the |V0| was proportional to 
the Imax. On the contrary, the Imax of the arcs 
at the cell edge was smaller than the arcs at 
the electrodes. This means that the resistance 
Rarc between the array (cathode) and the 
vacuum (anode) was larger in arcs at the cell 
edges than in arcs at the electrodes. 0
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To investigate Rarc in detail, the wave-

form of Rarc was calculated by means of di-
viding the absolute value of array potential 
by the current. The example waveform of 
Rrac is shown in Fig. 14. The Rarc decreased 
after arcing and was minimum after the cur-
rent was maximum, and then increased. This 
resistance is the sum of the resistance be-
tween the array and the chamber via plasma, 
and the resistance in the array circuit in-
cluding the inside of cells. The minimum 
value of Rarc was put as Rarc_min and was 
calculated over all discharge waveforms.  

Figure 15.  Relation between Rarc_min 
and V0. 
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Figure 15 shows the relation between 

Rarc_min and V0 for the arc both at the cell 
edge and at the electrode. In the case of the 
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short-circuit PN junction of the cell. 
 

ure 16.  Relation between Parc_min
and V0.
 decrease with increase in |V0|.  The re-
creases with increase in the energy of elec-
stance decreased since the energy of elec-
ncrease in |V0|. The resistance was larger 
e. In the case of the arc that degraded the 

as 2.5Ω. The average of Rarc_min at the 
_min in the case of the arc degrading the 
 It is one of this reason that the electrons 
pace than from the P electrode at the 
ate. The P electrode was melted out from 
 arcs, though the interconnectors were not 
n be heated from the arc as the arc oc-

ell by arcs, the power Parc wasted by Rarc 
rray potential. In Fig. 16, the maximum 
Fig. 16, the Parc_max of the cell edge arcs 
lt means that the cell edge arcs can heat 
 as one of the reasons for the cell degrada-
nd melted the cell edge and then 



In the experiment, the arc site between the coverglass and the silicone cell was observed 
at the current leakage point. If the adhesive between the coverglass and the cells is absence, 
the arc current can flow into N electrode as an arc occurs at the cell edge. The N+ diffusion 
layer just under the adhesive is about 0.1 µm in depth. Since this layer can be destroy easily 
by the arc site, PN junction is short-circuited. This is one of the reasons for the cell degrada-
tion. 
 

The array was biased at –400 V in the experiment, and the arcs caused the power degra-
dation. The power degradation was 10 % in the R-string, and 40 % in the G-string. Because 
of 4 cells in each string, the 2 cells were destroyed totally. The 295 arcs occurred during the 
experimental time of 565 s. From this result, the probability of one arc destroying one cell is 
about 0.7 %. Limiting at the cell edge, 26 arcs occurred. The probability of one cell edge arc 
destroying one cell is high, about 7.7 %. Since the arc rate decreases with time, and the 
plasma density in the experiment is the maximum value in LEO, to estimate the degraded 
cells in the satellite lifetime is overestimation. We can estimate that  cells are de-
graded during the lifetime of 10 years using the probability of 0.7 %. Generating the power of 
1 MW at 400 V, the number of the silicon cell generating 1 A at 0.5 V is , the series 
of 800 cells and 2500 string. A fourth of all cells is destroyed. This degradation is harder than 
the radiation degradation. In real case of 400 V power generation, the arc mitigation methods 
must be applied to the coupon. However, it is difficult for these methods to mitigate arcs 
completely. From these results, the double mitigation method, which means that the arc do 
not occur at the cell edge if the arc occur, is needed. 

5.7 ×105

2×106

 
Conclusions 

 
The ESD test of the 400 V power generation solar array for space use was performed in 

the vacuum chamber simulating the LEO plasma environment. The waveform of arc current 
was controlled close to the waveform considering the neutralization by arc plasma of cover-
glass charge by means of using LCR circuit. The system, which can measure the electrical 
performance of the solar array without opening the chamber, was constructed. 
 

A lot of arcs occurred on the solar array biased at –400 V and caused the degradation of 
the electric performance of solar array. From the results of identifying the degraded cells and 
current leakage point of the cells, it was observed that only one arc destroyed the PN junction 
of the cell. The arc destroying the cell occurred at the cell edge but at the electrode exposed 
to space. The interconnector and the bus bar had little damage due to arcing. On the other 
hand, as the arcs occurred at the cell edge, the P electrode melting out from the backside of 
cell, and the arc site between coverglass and the silicone were observed. From these results, it 
was thought that the arcs at the cell edge added heat stress locally to the cell edge and could 
destroy the cell. 
 

In real use of the high voltage solar array in space, it is necessary to apply the mitigation 
method to the solar array. In addition of applying the mitigation method, it is is important to 
prevent the arcs at the cell edge if the arc occurs on the solar array. 
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