
DESIGN OF A NEW MODULAR SPACECRAFT PLASMA INTERACTION
MODELING SOFTWARE (SPIS)

J.-F. Roussel

ONERA, 2Av E Belin
31055 Toulouse cedex 4, France

Phone: +33 5 62 25 27 35
Fax: +33 5 62 25 25 69

E-mail: Jean-Francois.Roussel@onecert.fr

F. Rogier, M. Lemoine, D. Volpert
ONERA

G. Rousseau

University Paris 7

G. Sookahet, P. Sèng
Artenum

A. Hilgers

ESA

Abstract

The development of a new software for spacecraft plasma interactions modeling was started
in Europe at the end of 2002. This Spacecraft Plasma Interaction Software (SPIS) is developed
for and by SPINE community (Spacecraft Plasma Interaction Network in Europe) on an open
source basis. The ESA contractors, ONERA, Artenum, and University Paris 7 are in charge of
the development of SPIS framework and main numerical modules. SPINE community will be
able to add extra modules and apply the code to its needs. The software framework is based on
the integration or interfacing with available open source tools for CAD, 2D meshing, 3D
meshing, GUI, post-processing and graphical display. The numerical routines will allow the
modeling of plasma dynamics (kinetic or fluid, electrostatic with possible extension to
electromagnetic) and its coupling with the spacecraft (equivalent circuit approach). The
modeling of all types of environments and devices will be allowed (LEO/GEO/PEO…, EP/solar
arrays…). The emphasis has been put on the code modularity to allow the interoperability of
modules, through an object-oriented approach throughout the code. User requirements were
defined in February 2003 (4th SPINE meeting), major technological choices and top level design
were performed in June 2003 (unstructured mesh is the basics, Java language was selected for
coding, pre-post/processing tools were chosen). The first release of the framework was in
October 2003. The major features of the software framework and of the physical numerical
routines are presented in this paper.

mailto:Jean-Francois.Roussel@onecert.fr

Introduction - SPIS Project Background

The interest in spacecraft plasma interaction modeling is almost as old as the discovery of the
possibly detrimental effects of high energy plasma on satellites. The first concerns had to do with
the integrity of the spacecraft platform, i.e. with its capability to operate normally. They are
usually called “technological” (as in the name of this conference). The early issues were due to
high level charging in Geostationary Earth Orbit (GEO), then in Polar low Earth Orbit (PEO),
and the subsequent ElectroStatic Discharge risk (ESD). More recently extra concerns about
plasma interactions with active devices, such as Photo Voltaic Arrays (PVA) and Electric
Propulsion (EP), also became of prime importance. A second category of concerns are
considered as pertaining to “science” rather than technology. Scientists study earth, planetary,
interplanetary and solar environments, and their measurements can be spoiled by plasma effects.
The most typical situation is the partial or total alteration of the low energy plasma
measurements by even a small charging potential, at the Volt scale (to be compared to the
hundreds or thousands of Volts scale of technological issues). Modeling the spacecraft and its
local plasma environment may allow to predict and/or avoid detrimental charging as in the
technological issues, but may also is some cases help the interpretation of the data by
“subtracting” the charging effects from the data. Although the typical charging levels of
“technological” and “scientific” issues are very different, many modeling techniques are
common and a properly designed simulation code should be able to address both. The need to
address both domains is also very clear in Europe where both commercial spacecraft and
scientific missions are flown by prime companies and ESA.

Unfortunately there is no simulation code both able to answer these needs and available at
Europe level or worldwide. Proprietary codes are by definition not available to any user and
suffer from the high costs of development and maintenance by a single company (as e.g.
ONERA SILECS code1). Commercial codes do exist, but they are either outdated (early
NASCAP/GEO2) or not available in Europe due to US export control regulations (NASCAP-
2K3).

These needs are at the origin of SPIS project (Spacecraft Plasma Interaction Software)
presented here. Another element of great importance in SPIS project background is the existence
of SPINE community. It stands for Spacecraft Plasma Interaction Network in Europe although it
is not limited to Europe and involves a few Americans and Japanese. It has been set up in 2000
and has been meeting approximately twice a year since then (see http://www.spis.org). The
origin of its members is quite diverse: spacecraft technology, space science, plasma science,
computer science… First aiming at exchanging information about spacecraft-plasma interaction
physics, flight observations, data, simulation methods and results, needs, etc. SPINE community
now plays a central role in the development of SPIS software reported here. This development is
both performed for the community and by the community on a collaborative basis.

Moreover, a prototype code, PicUp3D4,5 (J. Forest Ph.D.), was already developed in the
context of SPINE community. It first tested some technical tools which were chosen for SPIS
(Java, VTK). The activity around PicUp3D (users, extra developers) also demonstrated the
interest for such an open collaborative approach.

http://www.spis.org/

The first section of this article presents SPIS project objectives. The second section describes
the project organization for a collaborative development. The project schedule, including past
achievements and future plans, are presented next. Entering a little more into the technical details
the last two section respectively deal with the global framework of the code and the object
oriented design of the numerical solvers.

SPIS Project Objectives

Since the need of a spacecraft plasma interaction simulation code was clear, that none was

available, and that a lively community existed, it appeared clear that a new code had to be
developed in the framework of this SPINE community. SPINE members had the need for the
code and could offer some development effort.

In that context, the first objective of the code was to answer the whole set of needs of the
community. Beyond the large common basis, different needs were expressed in all domains,
ranging from solvers to interactions, or plasma source libraries (environment, artificial sources
such as EP…). So, the code had first to be versatile. If all the requirements could not be met in
its first versions, its structure should allow the extension of the code to fulfill them later.

The versatility of the code, i.e. its offering different modeling capabilities, could only be

achieved through a good modularity. Beyond answering this first requirement of versatility,
modularity also offered other advantages. It is of course known to be a condition for an efficient
code maintenance and evolution. But in the framework of SPINE, the major interest of building a
modular code was to permit a collaborative development, i.e. allow community members to
develop their own modules, to be shared with the whole community through neat imbedding in
the global code.

The direct consequence of the modularity requirement was the choice of an open source

policy. Although the interfacing of “black boxes” is possible when their inputs and outputs are
well documented, module interfacing at source level is much more efficient and safe. Since no
compatibility had to be insured with any inherited black box component, it was decided to
enforce open source policy on all developed modules for this new code. It did not mean at all
that it had to be developed from scratch since many modules are now available on an open
source basis both for pre/post-processing and numerical libraries.

Organisation for a Collaborative Development

The organization of SPIS code development was thus optimized for a collaborative

development within SPINE community. As depicted in figure 1, three major entities were set up
to collaborate in the code development.

A contract was first attributed to a contractor consortium after an open competition bidding

phase. The major roles of the contractor are to:

1- propose requirements in a first phase (Dec. 2002 through June 2003)

2-

3-

design a modular software architecture and develop its core modules (framework and basic
solvers) in a second phase (June 2003 through June 2004)

 support the community for an appropriation and testing of the code in a third phase (June
2004 through June 2005) including the use a of collaborative web platform LibreSource
http://www.libresource.org.

The consortium is led by ONERA, the French aerospace research public company, in charge

of project management and coordination, numerical architecture design and core numerical
solvers development. Subcontractors are Artenum company, specialized in consulting and
development in numerical engineering, in charge of SPIS framework development (pre/post-
processing, solvers embedding) and open source consulting, and University Paris 7 for
community related consulting.

A board was then set up to supervise the software development, the SDAB (Software
Development Advisory Board). It is composed of 1 contractor member, 1 ESA member and 3
community members. It supervises and orients the code development in particular in emitting
recommendations when tradeoffs are needed between different possible choices or requirements.

The third entity is SPINE community. For SPIS development, three Working Groups (WGs)

have been set up. Each WG has been defined around a specific subject and a challenging test
case related to that topic. In the first phase each WG emits requirements relevant to its domain,
then requests specific developments and eventually participates in code validation and
development in the third phase, where all resources will be devoted to running the test cases and
check the capability of the code to model them, upgrading it if necessary. The three WGs were
defined by the following topics and test cases:

- WG1: Sheaths, test case = Cluster spacecraft
- WG2: Artificial plasma (mostly EP), test case = SMART 1
- WG3: Material interaction, test cases = high level charging SC (Freja in PEO, Scatha in

GEO)

More can be found on SPIS web site http://www.spis.org/spis. about SPIS project

organization

http://www.libresource.org/
http://www.spis.org/

now

Dec 2002

June 2003

June 2004

June 2005

requestsu
pe

r
vi

se

proposition

develop

support
validation

development

request

Development
Phase 2

Support
Phase 3

Requirements
Phase 1

WGs

Contr
actor

SPINE
community

SDAB

ESA Contractor

Figure 1. SPIS project organization

Schedule: First Achievements - Future

User requirements were first to be defined. A first version was written by the contractor. It
was discussed within the community, in particular during 4th SPINE Meeting (Feb. 2003), and
upgraded with community feed back (during and after the meeting). The User Requirement
Document (URD) is accessible at http://www.spis.org/spis/docs/technical/SPIS_URD.pdf.

The major user requirements were the following:

• Solvers: Poisson, Vlasov (PIC), Poisson-Vlasov coupling, SC circuit, SC-Plasma coupling,
possibility to include extra solvers (Maxwell, fluid models for matter…)

• Environment: LEO, GEO, flexible environment model...
• Interactions: photo-emission, secondary emission, induced conductivity… basic models

provided, possibility to modify them and add extra models
• Sources: Maxwell distributions, electric propulsion… highly customisable
• Framework: GUI and command line / scripts, for pre/post-processing and computing
• Specific need to handle thin surfaces and wires (solar array, wire-like boom…)

In all of these subject, emphasis was put on modularity. If a capability may be needed but
will not be implemented initially, compatibility of the code architecture with its future
implementation must be insured.

The next trimester (March – June 2003) was devoted to Software Requirements (SRD) and

top level design. They were finalized after the Preliminary Design Review (PDR) between the
contractor and SDAB (June 2003). Major choices for languages and tool choices were
performed:

• Java was chosen for numerical modules and part of the framework coding, because:

• An Object Oriented (OO) language was needed for a better modularity
• Java is a pure OO-language contrarily to C++

http://www.spis.org/spis/docs/technical/SPIS_URD.pdf

• Benchmark on PicUp modules in Java (Julien Forest) showed that C++/Java speed ratio is
only on the order of 1 to 2, and even around 1 for compiled Java

• Jython, a python script language interpreter written in Java (homogeneous with solvers), was

chosen for part of the framework
• Pre- and post-processing open source tools to be integrated were chosen.

The major choices for numerical modeling were the following:

• Primary mesh will be unstructured (it does not exclude future usage of structured meshes)
• Solvers: Poisson, Vlasov, (spacecraft circuit), etc. will be developed for unstructured mesh
• The need of a specific handling of 2D and 1D physical elements was identified as deriving

from the thin surfaces and wires user requirements (not through 3D pizza-boxes or thin
cylinders, but through actual 2D and 1D elements). The electric field singularity around a
thin wire or a panel edge shall be extracted thanks to specific finite elements, allowing exact
particle trajectory integration. This is the only way to properly model plasma dynamics
around a singular geometry such as e.g. Cluster wire booms (40 m length versus diameter
around 1 mm!)

With the third trimester (June-Sept 2003) started the development phase. A large part of SPIS

framework was implemented:

• pre-processing
• some framework capabilities (group handling, scripting…)
• solver encapsulation: interfacing with PicUp3D prototype code was performed as a

demonstration (interfacing with SPIS solvers cannot yet be demonstrated since most routines
do not exist yet)

The full framework with post-processing capabilities will only be released in November

2003. Concerning the numerical routines, progress was:

• detail design of numerical routines architecture, emphasizing modularity and polymorphism
• prototype routines development.

The first SPIS release was presented during 5th SPINE meeting, on September 16-17, 2003. It

is now available at http://www.spis.org/spis/download/software/software.html. It was released
under the General Public License (GPL). It is a well known open source license (Linux license
for instance) which essentially forces the users of the distributed source code to further distribute
these source codes under the same GPL license.

The future milestones are the following:

• Release of full framework in November 2003 (post-processing added)
• Release of full SPIS software (framework + solvers) in March 2004, with course on SPIS (6th

SPINE meeting)

http://www.spis.org/spis/download/software/software.html

• Release of extended SPIS in June 2004 (7th SPINE meeting): the major extension should be
the specific handling of 2D and 1D elements (singularity extraction through specific finite
elements close to edges or wires for Poisson, analytical particle trajectories close to
singularities), although it still need to be confirmed at 6th SPINE meeting.

SPIS Framework

We just sketch here a few technical details of SPIS code framework. It has both a Graphical

User Interface (GUI) and a command line interface with the capability to run scripts (Python
script language). Commands can either handle high level objects (example: object = plasma,
action = integrate over time t), or address low level objects, achieving a much more detailed
tuning of the computation thanks to the perfect encapsulation of Java objects in the Java-coded
Python script interpreter called Jython (example: object = Poisson boundary conditions on
computation box boundary, action = set it as homogeneous Fourier conditions with local
parameter defined so as to mimic a 1/r2 potential decay mimicking potential in a pre-sheath
around a sphere).

SPIS architecture is depicted in Figure 2. The GUI in the two lower rows indeed generates

commands (row above), which are transferred to the control center. The control center has its
own data structure (row above) for geometry, meshes, physical data and visualization. It transfers
them to and from the various modules (geometry and mesh generation, physical properties
handling, numerical solvers, and post-processing).

Data Field

Command line

Visu. data Mesh data CAD data

General Framework GUI

Visu GUISolver GUIPhysical GUIMesh GUI Geom GUI

Mesh Geometry

Control center

SolverPhysical Post-proc.

Figure 2. SPIS framework architecture

An example screenshot is then presented in Figure 3. This picture only shows a prototype
which was written in wxPython when the C++/Python solution was investigated, whereas the
final language choice of Java/Jython led us to consistently implemented the GUI in Java/Swing
(the full GUI will only be released in November).

 and the VTK views The main window...

Figure 3. Prototype screenshot in wxPython and VTK pop up windows (post-procressing)

An example of volume meshing with one of the two interfaced mesh generators (Tetgen) is

also reported in Figure 4. This second mesh generator offers volume meshing around 1D or 2D
objects (infinitely thin arrays on the Fig. 4 plot) contrarily to the first interfaced mesh generator
(GMSH).

Figure 4. Example of volume meshing with Tetgen (supports thin objects, as the PVA here)

Modularity and Polymorphism of Numerical Routines

In their current development state, the main novelty in the numerical routines, as compared to
existing codes, is their modularity. It can roughly be stated that we know how to do a software to

simulate plasma-spacecraft interactions. This statement is supported by the number of existing
such codes, even though some solvers may of course be more or less efficient, accurate or stable.
What we have to do here yet involves a significantly extra difficulty. We have to make it
modular so as to incorporate very heterogeneous modules such as:

• Mesh: unstructured or structured
• Dimension: 3D, 2D, 1D (+ axysymetric…)
• Matter: kinetic (e.g. Particle-In-Cell, PIC), fluid, or global (Boltzman distribution)
• (Electric) Field: stored as a field, or stored as a potential
• Field or variable: centring (nodes/edges/surfaces/cells), scalar/vector…
• Solvers: different versions
• …

As briefly stated above, using OO languages greatly helps to reach that goal, hence the
choice of Java. This is implemented through polymorphism, i.e. different versions of objects,
which, although internally coded very differently, offer the same services to external requests.
For example, a matter distribution object shall offer two basic services, “move” and “get
moment,” whatever their internal representation, either kinetic (PIC), fluid or global. So, the
basic tool to implement modularity is available in an OO code. This is yet far from doing the job.
The real difficulty indeed lies in the number of different polymorphisms to be implemented (list
above). Straightforwardly implementing the polymorphism recipe just described leads to an
horrific implementation, such as the examples depicted in Figure 5. A new branching of the
derivation tree is defined to implement each polymorphism. The number of derived classes is
multiplied at each step. The resulting enormous amount of classes is very difficult to handle,
support and modify. Development costs rise, while modularity is largely lost. So, the right way
to ensure a good modularity is by uncoupling the polymorphisms, replacing class number
multiplications by additions, as will be explained next.

Matter model

Global (Boltzman)Fluid (Euler…)Kinetic (PIC)

Field

Node
centred

3D

On structured mesh On unstructured mesh

2D 1D 3D 2D 1D

Cell
centred …

Scalar Vector …

3D

On structured mesh On unstructured mesh

2D 1D 3D 2D 1D …

With electric
field

With
potential …

Figure 5. Two examples of horrific implementation of multiple polymorphism (triangle

arrows represented different derived classes in these UML diagrams)

Before explaining this idea through a few examples, we present the overall SPIS conceptual
class diagram in Figure 6. It will help understand the examples. In the UML graph of the figure

the arrows ended with a diamond represent the aggregation, or composition: the Simulation
object on the right is composed of 1 Plasma object and 1 Spacecraft object, etc. The arrows
ended with a triangle represent derivation or specialisation: a VolDistribution object can be either
of a FluidDistribution version, a KineticPICDistribution or a GlobalDistribution. In the 1st case
it will be composed of VolField objects (distribution moments), of 1 ParticleList object in the 2nd
case, and simply a few global parameters in the 3rd case (not represented). The class names
should be explicit enough for the reader to understand the chart.

Global
Distribution

Global Flux

VolInteraction

PIC Flux

Particle List
Positions
Velocities
Weights
Type
Flag, index

1 11 1

Circuit
Connectivity

Integrate()
GetPotential()

Fluid flux
SurfMesh

Geometry

Advance()
CurrentDeposit()

0..n

1

0..n

1

Derives

Circuit Field
Values

Combine()
1..n 11..n 1

VolDistribution
Distribution function
Possibly moments

move()
GetMoment()
Combine()

VolField
Values
centring

GetField()
Combine()

VolMesh
Geometry

PoissonSolve()
Advance()
ChargeDeposit()
Gradient()
Interpolate()

0..n

1

0..n

1

1..n

0..1

1..n

0..1

0..n

0..1

0..n

0..1

1

0..1

1

0..1

Plasma

Integrate()1

1..n
0..n

Simulation

Integrate()

1

1

Spacecraft

DeriveCircuit()
Integrate()
MapSurfToCirc()
MapCircToSurf()

1
1

1
1

1

0..1

1

0..1 1

SurfField
Values
Centring

Combine()
GetField()

0..n

1

0..n

1

Maps

SurfInteraction
Interact()

Surface Distribution
Flux distribution
Possibly moments

GetMoment()
Combine()

1..n

0..1

1..n

0..1

1

1

1

1

1

1..n
0..n

Fluid
Distribution

1..n1..n

KineticPIC
Distribution

1 11 1

Figure 6. UML graph of SPIS conceptual class design. Each box is a class, the 2nd part of

the box contains attributes (i.e. data), the 3rd part operations (i.e. methods). Diamond
arrows indicate composition, triangle arrows indicate specialization (i.e. derivation).

Figure 7 represents a top level design of the Volume Distribution class, and in particular how

its polymorphism can be uncoupled from others. As already written above, the three derived
classes are PIC Volume Distribution, Fluid Volume Distribution, and Global Volume
Distribution of Boltzmann type, one per column (class names are sometimes abbreviated but
should remain explicit enough). The Move and Get Moment methods must be implemented for
each of the classes derived from Volume Distribution. The coding of these methods is necessarily
different for each derived type, kinetic, fluid, or global. The good design introduced above, i.e.
the uncoupling of polymorphisms, consists in making the implementation of these methods
independent of the other polymorphisms, e.g. the mesh type, space dimensionality, E field
storage, etc. The arrows on the left hand side show how it works on some examples:

- The E.GetField(pl, E_Val) method of the E field object returns the electric field value at the

particle list positions whatever the specialization of E is, either stored as a potential (usual in
electrostatics) or as an actual vector field (more common in electromagnetism). The

polymorphism of the vector field potential/vector is uncoupled from the volume distribution
one, it is transparent when integrating particle trajectories. This was a very simple case.

- The pl.vm.Advance(pl,dx) method is basically a computation of particle trajectories

intersection with spacecraft and box boundaries. It is of course very dependant of the type of
mesh (structured or unstructured…). But this is transparent for the particle method Move,
which simply requires this computation from the generic Advance method of the volume
mesh vm in which the particles are tracked, whatever the volume mesh type is.

There is indeed many more polymorphisms to uncouple in this routine than actually

emphasized by the arrows. Space dimension does not show in this routine whereas it might be
omnipresent, if coded without care. This is true for the Advance method already discussed, since
its actual implementation is dependant on the mesh type but of course also on space dimension.
It is also the case for the trajectory integration, which is the core of that routine. It is crudely
symbolized in this figure by ‘v = v + (E+vXB) dt; dx = v dt’, but the vectors (lists) x, v, etc. are
dependant on space dimension. The relationship between x increment and v gets even more
complex in case of non Cartesian geometry (e.g. axisymmetry). So, both the objects (x, v, etc.)
and the operations between them must be invoked independently of their actual implementation
(e.g. through a position_increment_from_velocity method here in Java (not represented in the
figure), not by overloading the + operator as it could perhaps be done in C++ if sub-types are
accurate enough).

Figure 7. Example of polymorphism: Volume Distribution

Thanks to this uncoupling the Move method can perform its main job, i.e. particle trajectory
integration†, independently of the sub-types of the other objects. In the simple example of Figure
7, it is a basic first order scheme. If an improved scheme is to be implemented, as a leapfrog
(magnetic force to be changed) or an higher order scheme, it can simply be done in the Move
routine, independently of the mesh type, space dimension, E or B field storage, etc., which is
very important to offer a good modularity.

As a final illustration of polymorphism uncoupling, let us list how different objects, which

might a priori depend on space dimension (and symmetries), were made as much as possible
independent of space dimension (object in bold font could not escape an explicit dimension-
dependant implementation):

† Things are not as simple as in the simplified illustration of Figure 7, since for example the integration time step can
depend on the mesh (CFL-type conditions), which forces to transmit such information from the mesh to the
integration routine (simply as a global maximum time step, or better a particle-dependent time step for sub-cycling)

• Volume or surface mesh:

• Data structure: explicit implementation
• Solvers: partially dimension-specific: e.g. Poisson equation matrix writing is dimension-

specific, whereas its solving is not

• Vector table : explicit implementation, table of different dimension

• Particle list: transparent, handled at vector table level

• Volume or surface fields: transparent (a vector field in 3D is 3D table of 3 values):

• stored in 1D tables (may be recast in 3D/2D tables for structured solvers, but this is
handled at mesh/solver level)

• Vector fields => handled at “vector table” level

• Volume or surface distributions: transparent:

• data: transparent, handled at particle list (PIC Distribution) or field level (Fluid
Distribution)

• Solvers, main example of Move() (cf. Figure 7):
• if PIC transparent
• if fluid => transferred to mesh solver.

A last remark about object design has to do with efficiency. OO programming is very

interesting to design modular codes, but there is a cost associated with each object, a memory
cost and certainly more important a computation time cost. In order to avoid these costs to
impact significantly the overall performance, no “small objects” were defined, i.e. individual
particles or mesh cells were not defined as objects. As visible on the examples above, only “large
objects” were implemented, i.e. particle lists or cell lists. This allowed to maintain the extra
computation load due to object handling to a very reasonable amount.

Conclusions

A new software dedicated to spacecraft plasma interaction modeling was presented. Its major
originality is its openness. It is collaboratively developed within SPINE community, an open
community of scientists and engineers studying spacecraft plasma interactions. In that purpose,
the code is released under an open source form (sources distributed under GPL license). The
code framework based on modern techniques (Java, Jython, Swing) and on open source pre-
post/processing tools, and the object design of the solvers ensuring an efficient modularity were
eventually presented.

The free access to this code should allow an important spreading in science and technology

teams, leading to an extensive testing and validation. The principle of open source collaborative
development is to use the code, enhance it by adding extra modules, improving the existing ones,

or simply testing them, and then let the community profit by these improvements as a return. As
shown by the interest for the code in Europe and worldwide, this positive dynamics is likely to
be significantly enhanced after SPIS full release in spring 2004.

References

1. Roussel, J.-F, “Spacecraft Plasma Environment and Contamination Simulation Code:

Description and First Test,” Journal of Spacecraft and Rockets, Vol.35, No.2, p.205-211,
1998.

2. Neergaard, L. et al., ”Comparison of the NASCAP/GEO, SEE Interactive Charging

Handbook and NASCAP-2K Spacecraft Charging Codes,” 7th Spacecraft Charging
Technology Conference,23-25 April 2001, ESTEC, The Netherlands, ESA SP-476,
pp115-, 2001.

3. Mandell, M., “NASCAP-2K – An Overview,” this conference.

4. Forest, J., “Feedbacks On the PicUp3D Experience and the Open Source Strategy

Applied to a Spacecraft-Plasma Interaction Simulation Code,” this conference.

5. Thiebault, B., “Modeling Of The Photoelectron Sheath Around An Active
Magnetospheric Spacecraft With Picup3d,” this conference.

	Navigation
	Cover Page
	The NASA STI Program Office-in Profile
	Availablilty
	Introduction
	Table of Contents
	Attendee List
	Report Documentation
	Plasma Propulsion and Tethers Session
	Physical Problems of Artificial Magnetospheric Propulsion
	Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array
	Plasma Interactions with a Negative Biased Electrodynamic Tether
	A 'Free-Lunch' Tour of the Jovian System

	Ground Testing Techniques Session
	Issues Concerning the International Standard of ESD Ground Test for Geo Satellite Solar Array
	Electron-Beam-Induced ESD Triggering Discharge Tests for Solar Arrays for Space Use
	Ground Experiment and Numerical Simulation of Spacecraft Archicing In Ambient Plasma Environments
	Development of Solar Array for a Wideband Internetworking Engineeing Test and Demonstration Satellite System Design
	Development of Solar Array for a Wideband Internetworking Satellite
	Ground-based Simulation of Low Earth Orbit Plasma Conditions
	Secondary Arcs on Solar Generatiors - EMAGS 2 Test Campaign
	Characteristic of Charge Accumulation in Glass Materials Under Electron Beam Irradiation
	Measurement of Bulk Charge in Dielectric Materials Irradiated by Electron Beam in Vacuum Environment
	Improved Demonstration of Internal Charging Hazards Using The Realistic Electron Environment Facility
	High Voltage Solar Array Testing for a Direct Drive Hall Effect Thruster
	Measurement of Charge Distribution in Electron Beam Irradiated PMMA Using Electro-Optical Effect
	Plasma Phenomena Associated with Solar Array Discharges and Their Role in Scaling Coupon Test Results to a Full Panel

	Poster Session I
	Materials Characterization at Utah State University-Facilities and Knowledge of Electronic Properties of Materials Applicable to Spacecraft Charging
	Feedback on the Picup3D Experience and the Open Source Strategy Applied to a Spacecraft-Plasma Interaction Simulation Code
	On-Orbit Daytime Solar Heating Effects- A Comparison of Ground Chamber Arcing Results
	Space Environments and Effects (SEE) Program-Spacecraft Charging Technology Development Activities
	Secondary Electron Emission Causing Potential Barriers Around Negatively Charged Spacecraft
	Investigation of Electrostatic Potential Barrier Near an Electron-Emitting Body
	Instrumentation for Studies of Electron Emission and Charging from Insulators
	AF-Geospace 2.0

	Interaction of Spacecraft and Systems with the Natural and Induced Plasma Environment Session
	A Review of Spacecraft Effects on Plasma Measurements
	Observations of Vehicle Surface Charging in Dusty Plasma
	Spacecraft Charging in a Quasi-Static and Dynamic Plasma Environment and the Scaling Laws for ESD-Induced Current Transients
	Modeling of the Plasma Thruster Impact on Spacecraft Charging
	The Viability of Using Weight-Saving Material for Future Long-Term Space Vehicles
	Simulations of Solar Wind Plasma Flow Around a Simple Solar Sail
	High Voltage Solar Array for 400V Operation in LEO Plasma Environment
	High-Level Spacecraft Charging at Geosynchronous Altitudes-A Statistical Study
	Degradation of High Voltage Solar Array Due to Arcing in LEO Plasma Environment
	ECSS-E-20-06 Draft Standard on Spacecraft Charging--Environment-Induced Effects and the Electrostatic Behavior of Space Systems
	Modeling of the Photoelectron Sheath Around an Active Magnetosphereic Spacecraft with PicUp3D
	Feasibility Study of an Experimental Platform with Active Plasma Emission for Japan Experimental Module Onboard ISS
	Onset of Spaecraft Charging in Single and Double Maxwellian Plasmas in Space-A Pedagogical Review
	Solar Array in Simulated LEO Plasma Environment

	Material Characterization Session
	Charge Storage Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
	Electron Emission Properties of Insulator Materials Pertinent to the International Space Station
	European Approach to Material Characterisation for Plasma Interaction Analysis
	An Improved Method for Simulating the Charge of Dielectrics
	Clear Conductive Transparent Flexible Space Durable Composite Films for Electrostatic Charge Mitigation

	Models and Computer Simulations Session
	An Educational Multimedia Presentation on the Introduction to Spacecraft Charging
	NASCAP-2K-An Overview
	Validation of NASCAP-2K Spacecraft Environment Interactions Calculations
	NASCAP-2K as a PIC Code
	Assessment and Control of Spacecraft Charging Risks on the International Space Station
	ISS Plasma Interaction - Measurements and Modeling
	Specification of ISS Plasma Environment Variability
	Electron Collection by International Space Station Solar Arrays
	The Electric Propulsion Interactions Code
	Effects of Large-Amplitude RF Emissions on Oedipus-C Floating Voltages
	SPARCS: An Advanced Software for Spacecraft Charging Analysis
	Computer Simulation of Radiation Charging Processes in Spacecraft Materials
	Design of a New Modular Spacecraft Plasma Interaction Modeling Software(SPIS)
	Development of a Virtual Testing Laboratory for Spacecraft-Plasma Interactions
	Features of Charging of Composite Configuration Spacecraft Charging in High Orbits

	Environment Specifications Session
	Representation of the Geosynchronous Plasma Spacecraft Charging Calculations
	An Imperical Low-Energy Ion Model of the Inner Magnetosphere
	Inner Radiation Belt Representation of the Energetic Electron Environemnt-Model and Data Synthesis Using the Salammbo Radiation Belt Transport Code
	Assimilitive Forecasting of the Energetic Particle Environment
	Operational Prediction and Specification of the Spacecraft Charging Environment
	The Flumic Electron Environment Model
	New NASA SEE LEO Spacecraft Charging Design Guidelines-How to Survive in LEO Rather than GEO

	Poster Session II
	Embedded-Probe Floating Potential Charge-Discharging Monitor
	Wake Effects on Positively Charged Spacecraft Floating Tenuous Plasmas-Cluster Observations and Modeling
	Modeling of the Plasma Environment of a FEEP Micro Thruster with PicUp3D Simulation Code - Sample Results
	Carbon Nanofiber-Filled Materials for Charge Dissipation
	Comparison of Classical and Charge Storage Methods for Determining Conductivity of Thin Film Insulators
	Particle-in-Cell Simulation of Antenna Characteristics in Magnetized Plasma
	An Educational Multimedia Presentation on the Introduction to Spacecraft Charging

	Current Collection and Plasma Probes in Space Plasmas Sessions
	Current Collection by a Segmented Langmuir Probe in the Ionospheric Plasma
	Calibrating the Floating Potential Measurement UInit
	The Deflection Plate Analyzer-A Technique for Plasma Measurements under Highly Disturbed Conditions

	On-Orbit Investigations Session
	Nearly Eight Years of SOHO Observations - Some Highlights
	Space Weather Effects on SOHS and its Role as a Space Weather Watchdog
	In-Flight Anomalies Attributed to ESDs - Recent Cases and Trends
	A Novel Spacecraft Charge Monitor for LEO
	Active Spacecraft Potential Control for Cluster Results from Three Years in Orbit
	On-Orbit Experiments and Research on Measuring the Spacecraft Charging

	Conference Photos
	9th Spacecraft Charging Technology Conference

