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Abstract 
 

The development of a new software for spacecraft plasma interactions modeling was started 
in Europe at the end of 2002. This Spacecraft Plasma Interaction Software (SPIS) is developed 
for and by SPINE community (Spacecraft Plasma Interaction Network in Europe) on an open 
source basis. The ESA contractors, ONERA, Artenum, and University Paris 7 are in charge of 
the development of SPIS framework and main numerical modules. SPINE community will be 
able to add extra modules and apply the code to its needs. The software framework is based on 
the integration or interfacing with available open source tools for CAD, 2D meshing, 3D 
meshing, GUI, post-processing and graphical display. The numerical routines will allow the 
modeling of plasma dynamics (kinetic or fluid, electrostatic with possible extension to 
electromagnetic) and its coupling with the spacecraft (equivalent circuit approach). The 
modeling of all types of environments and devices will be allowed (LEO/GEO/PEO…, EP/solar 
arrays…). The emphasis has been put on the code modularity to allow the interoperability of 
modules, through an object-oriented approach throughout the code. User requirements were 
defined in February 2003 (4th SPINE meeting), major technological choices and top level design 
were performed in June 2003 (unstructured mesh is the basics, Java language was selected for 
coding, pre-post/processing tools were chosen). The first release of the framework was in 
October 2003. The major features of the software framework and of the physical numerical 
routines are presented in this paper. 
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Introduction - SPIS Project Background 

The interest in spacecraft plasma interaction modeling is almost as old as the discovery of the 
possibly detrimental effects of high energy plasma on satellites. The first concerns had to do with 
the integrity of the spacecraft platform, i.e. with its capability to operate normally. They are 
usually called “technological” (as in the name of this conference). The early issues were due to 
high level charging in Geostationary Earth Orbit (GEO), then in Polar low Earth Orbit (PEO), 
and the subsequent ElectroStatic Discharge risk (ESD). More recently extra concerns about 
plasma interactions with active devices, such as Photo Voltaic Arrays (PVA) and Electric 
Propulsion (EP), also became of prime importance. A second category of concerns are 
considered as pertaining to “science” rather than technology. Scientists study earth, planetary, 
interplanetary and solar environments, and their measurements can be spoiled by plasma effects. 
The most typical situation is the partial or total alteration of the low energy plasma 
measurements by even a small charging potential, at the Volt scale (to be compared to the 
hundreds or thousands of Volts scale of technological issues). Modeling the spacecraft and its 
local plasma environment may allow to predict and/or avoid detrimental charging as in the 
technological issues, but may also is some cases help the interpretation of the data by 
“subtracting” the charging effects from the data. Although the typical charging levels of 
“technological” and “scientific” issues are very different, many modeling techniques are 
common and a properly designed simulation code should be able to address both. The need to 
address both domains is also very clear in Europe where both commercial spacecraft and 
scientific missions are flown by prime companies and ESA. 
 

Unfortunately there is no simulation code both able to answer these needs and available at 
Europe level or worldwide. Proprietary codes are by definition not available to any user and 
suffer from the high costs of development and maintenance by a single company (as e.g. 
ONERA SILECS code1). Commercial codes do exist, but they are either outdated (early 
NASCAP/GEO2) or not available in Europe due to US export control regulations (NASCAP-
2K3).  
 

These needs are at the origin of SPIS project (Spacecraft Plasma Interaction Software) 
presented here. Another element of great importance in SPIS project background is the existence 
of SPINE community. It stands for Spacecraft Plasma Interaction Network in Europe although it 
is not limited to Europe and involves a few Americans and Japanese. It has been set up in 2000 
and has been meeting approximately twice a year since then (see http://www.spis.org). The 
origin of its members is quite diverse: spacecraft technology, space science, plasma science, 
computer science… First aiming at exchanging information about spacecraft-plasma interaction 
physics, flight observations, data, simulation methods and results, needs, etc. SPINE community 
now plays a central role in the development of SPIS software reported here. This development is 
both performed for the community and by the community on a collaborative basis.  
 

Moreover, a prototype code, PicUp3D4,5 (J. Forest Ph.D.), was already developed in the 
context of SPINE community. It first tested some technical tools which were chosen for SPIS 
(Java, VTK). The activity around PicUp3D (users, extra developers) also demonstrated the 
interest for such an open collaborative approach. 
 

http://www.spis.org/


The first section of this article presents SPIS project objectives. The second section describes 
the project organization for a collaborative development. The project schedule, including past 
achievements and future plans, are presented next. Entering a little more into the technical details 
the last two section respectively deal with the global framework of the code and the object 
oriented design of the numerical solvers. 

 
SPIS Project Objectives 

 
Since the need of a spacecraft plasma interaction simulation code was clear, that none was 

available, and that a lively community existed, it appeared clear that a new code had to be 
developed in the framework of this SPINE community. SPINE members had the need for the 
code and could offer some development effort. 
 

In that context, the first objective of the code was to answer the whole set of needs of the 
community. Beyond the large common basis, different needs were expressed in all domains, 
ranging from solvers to interactions, or plasma source libraries (environment, artificial sources 
such as EP…). So, the code had first to be versatile. If all the requirements could not be met in 
its first versions, its structure should allow the extension of the code to fulfill them later. 

 
The versatility of the code, i.e. its offering different modeling capabilities, could only be 

achieved through a good modularity. Beyond answering this first requirement of versatility, 
modularity also offered other advantages. It is of course known to be a condition for an efficient 
code maintenance and evolution. But in the framework of SPINE, the major interest of building a 
modular code was to permit a collaborative development, i.e. allow community members to 
develop their own modules, to be shared with the whole community through neat imbedding in 
the global code. 

 
The direct consequence of the modularity requirement was the choice of an open source 

policy. Although the interfacing of “black boxes” is possible when their inputs and outputs are 
well documented, module interfacing at source level is much more efficient and safe. Since no 
compatibility had to be insured with any inherited black box component, it was decided to 
enforce open source policy on all developed modules for this new code. It did not mean at all 
that it had to be developed from scratch since many modules are now available on an open 
source basis both for pre/post-processing and numerical libraries. 

 
Organisation for a Collaborative Development 

 
The organization of SPIS code development was thus optimized for a collaborative 

development within SPINE community. As depicted in figure 1, three major entities were set up 
to collaborate in the code development. 

 
A contract was first attributed to a contractor consortium after an open competition bidding 

phase. The major roles of the contractor are to: 
 

1- propose requirements in a first phase (Dec. 2002 through June 2003) 



2- 

3- 

design a modular software architecture and develop its core modules (framework and basic 
solvers) in a second phase (June 2003 through June 2004) 

 
 support the community for an appropriation and testing of the code in a third phase (June 
2004 through June 2005) including the use a of collaborative web platform LibreSource 
http://www.libresource.org. 

 
The consortium is led by ONERA, the French aerospace research public company, in charge 

of project management and coordination, numerical architecture design and core numerical 
solvers development. Subcontractors are Artenum company, specialized in consulting and 
development in numerical engineering, in charge of SPIS framework development (pre/post-
processing, solvers embedding) and open source consulting, and University Paris 7 for 
community related consulting. 
 

A board was then set up to supervise the software development, the SDAB (Software 
Development Advisory Board). It is composed of 1 contractor member, 1 ESA member and 3 
community members. It supervises and orients the code development in particular in emitting 
recommendations when tradeoffs are needed between different possible choices or requirements. 

 
The third entity is SPINE community. For SPIS development, three Working Groups (WGs) 

have been set up. Each WG has been defined around a specific subject and a challenging test 
case related to that topic. In the first phase each WG emits requirements relevant to its domain, 
then requests specific developments and eventually participates in code validation and 
development in the third phase, where all resources will be devoted to running the test cases and 
check the capability of the code to model them, upgrading it if necessary. The three WGs were 
defined by the following topics and test cases: 

 
- WG1: Sheaths, test case = Cluster spacecraft 
- WG2: Artificial plasma (mostly EP), test case = SMART 1 
- WG3: Material interaction, test cases = high level charging SC (Freja in PEO, Scatha in 

GEO) 
 
More can be found on SPIS web site http://www.spis.org/spis. about SPIS project 

organization 

http://www.libresource.org/
http://www.spis.org/
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Figure 1.  SPIS project organization 

Schedule: First Achievements - Future 

User requirements were first to be defined. A first version was written by the contractor. It 
was discussed within the community, in particular during 4th SPINE Meeting (Feb. 2003), and 
upgraded with community feed back (during and after the meeting). The User Requirement 
Document (URD) is accessible at http://www.spis.org/spis/docs/technical/SPIS_URD.pdf. 
 

The major user requirements were the following: 
 

• Solvers: Poisson, Vlasov (PIC), Poisson-Vlasov coupling, SC circuit, SC-Plasma coupling, 
possibility to include extra solvers (Maxwell, fluid models for matter…) 

• Environment:  LEO, GEO, flexible environment model... 
• Interactions: photo-emission, secondary emission, induced conductivity… basic models 

provided, possibility to modify them and add extra models 
• Sources: Maxwell distributions, electric propulsion… highly customisable 
• Framework: GUI and command line / scripts, for pre/post-processing and computing 
• Specific need to handle thin surfaces and wires (solar array, wire-like boom…) 
 

In all of these subject, emphasis was put on modularity. If a capability may be needed but 
will not be implemented initially, compatibility of the code architecture with its future 
implementation must be insured. 

 
The next trimester (March – June 2003) was devoted to Software Requirements (SRD) and 

top level design. They were finalized after the Preliminary Design Review (PDR) between the 
contractor and SDAB (June 2003). Major choices for languages and tool choices were 
performed: 

 
• Java was chosen for numerical modules and part of the framework coding, because:  
 

• An Object Oriented (OO) language was needed for a better modularity 
• Java is a pure OO-language contrarily to C++ 

http://www.spis.org/spis/docs/technical/SPIS_URD.pdf


• Benchmark on PicUp modules in Java (Julien Forest) showed that C++/Java speed ratio is 
only on the order of 1 to 2, and even around 1 for compiled Java 

 
• Jython, a python script language interpreter written in Java (homogeneous with solvers), was 

chosen for part of the framework 
• Pre- and post-processing open source tools to be integrated were chosen. 
 

The major choices for numerical modeling were the following: 
 

• Primary mesh will be unstructured (it does not exclude future usage of structured meshes) 
• Solvers: Poisson, Vlasov, (spacecraft circuit), etc. will be developed for unstructured mesh 
• The need of a specific handling of 2D and 1D physical elements was identified as deriving 

from the thin surfaces and wires user requirements (not through 3D pizza-boxes or thin 
cylinders, but through actual 2D and 1D elements). The electric field singularity around a 
thin wire or a panel edge shall be extracted thanks to specific finite elements, allowing exact 
particle trajectory integration. This is the only way to properly model plasma dynamics 
around a singular geometry such as e.g. Cluster wire booms (40 m length versus diameter 
around 1 mm!) 

 
With the third trimester (June-Sept 2003) started the development phase. A large part of SPIS 

framework was implemented: 
 

• pre-processing 
• some framework capabilities (group handling, scripting…) 
• solver encapsulation: interfacing with PicUp3D prototype code was performed as a 

demonstration (interfacing with SPIS solvers cannot yet be demonstrated since most routines 
do not exist yet) 

 
The full framework with post-processing capabilities will only be released in November 

2003. Concerning the numerical routines, progress was: 
 

• detail design of numerical routines architecture, emphasizing modularity and polymorphism 
• prototype routines development. 

 
The first SPIS release was presented during 5th SPINE meeting, on September 16-17, 2003. It 

is now available at http://www.spis.org/spis/download/software/software.html. It was released 
under the General Public License (GPL). It is a well known open source license (Linux license 
for instance) which essentially forces the users of the distributed source code to further distribute 
these source codes under the same GPL license. 
 

The future milestones are the following: 
 

• Release of full framework in November 2003 (post-processing added) 
• Release of full SPIS software (framework + solvers) in March 2004, with course on SPIS (6th 

SPINE meeting) 

http://www.spis.org/spis/download/software/software.html


• Release of extended SPIS in June 2004 (7th SPINE meeting): the major extension should be 
the specific handling of 2D and 1D elements (singularity extraction through specific finite 
elements close to edges or wires for Poisson, analytical particle trajectories close to 
singularities), although it still need to be confirmed at 6th SPINE meeting. 

 
SPIS Framework 

 
We just sketch here a few technical details of SPIS code framework. It has both a Graphical 

User Interface (GUI) and a command line interface with the capability to run scripts (Python 
script language). Commands can either handle high level objects (example: object = plasma, 
action = integrate over time t), or address low level objects, achieving a much more detailed 
tuning of the computation thanks to the perfect encapsulation of Java objects in the Java-coded 
Python script interpreter called Jython (example: object = Poisson boundary conditions on 
computation box boundary, action = set it as homogeneous Fourier conditions with local 
parameter defined so as to mimic a 1/r2 potential decay mimicking potential in a pre-sheath 
around a sphere).  

 
SPIS architecture is depicted in Figure 2. The GUI in the two lower rows indeed generates 

commands (row above), which are transferred to the control center. The control center has its 
own data structure (row above) for geometry, meshes, physical data and visualization. It transfers 
them to and from the various modules (geometry and mesh generation, physical properties 
handling, numerical solvers, and post-processing). 
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Figure 2.  SPIS framework architecture 
 

An example screenshot is then presented in Figure 3. This picture only shows a prototype 
which was written in wxPython when the C++/Python solution was investigated, whereas the 
final language choice of Java/Jython led us to consistently implemented the GUI in Java/Swing 
(the full GUI will only be released in November). 



  and the VTK views The main window... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Prototype screenshot in wxPython and VTK pop up windows (post-procressing) 

 
An example of volume meshing with one of the two interfaced mesh generators (Tetgen) is 

also reported in Figure 4. This second mesh generator offers volume meshing around 1D or 2D 
objects (infinitely thin arrays on the Fig. 4 plot) contrarily to the first interfaced mesh generator 
(GMSH). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Example of volume meshing with Tetgen (supports thin objects, as the PVA here) 
 

Modularity and Polymorphism of Numerical Routines 
 

In their current development state, the main novelty in the numerical routines, as compared to 
existing codes, is their modularity. It can roughly be stated that we know how to do a software to 



simulate plasma-spacecraft interactions. This statement is supported by the number of existing 
such codes, even though some solvers may of course be more or less efficient, accurate or stable. 
What we have to do here yet involves a significantly extra difficulty. We have to make it 
modular so as to incorporate very heterogeneous modules such as: 

 
• Mesh: unstructured or structured 
• Dimension: 3D, 2D, 1D (+ axysymetric…) 
• Matter: kinetic (e.g. Particle-In-Cell, PIC), fluid, or global (Boltzman distribution) 
• (Electric) Field: stored as a field, or stored as a potential 
• Field or variable: centring (nodes/edges/surfaces/cells), scalar/vector… 
• Solvers: different versions 
• … 
 

As briefly stated above, using OO languages greatly helps to reach that goal, hence the 
choice of Java. This is implemented through polymorphism, i.e. different versions of objects, 
which, although internally coded very differently, offer the same services to external requests. 
For example, a matter distribution object shall offer two basic services, “move” and “get 
moment,” whatever their internal representation, either kinetic (PIC), fluid or global. So, the 
basic tool to implement modularity is available in an OO code. This is yet far from doing the job. 
The real difficulty indeed lies in the number of different polymorphisms to be implemented (list 
above). Straightforwardly implementing the polymorphism recipe just described leads to an 
horrific implementation, such as the examples depicted in Figure 5. A new branching of the 
derivation tree is defined to implement each polymorphism. The number of derived classes is 
multiplied at each step. The resulting enormous amount of classes is very difficult to handle, 
support and modify. Development costs rise, while modularity is largely lost. So, the right way 
to ensure a good modularity is by uncoupling the polymorphisms, replacing class number 
multiplications by additions, as will be explained next. 
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Figure 5.  Two examples of horrific implementation of multiple polymorphism (triangle 

arrows represented different derived classes in these UML diagrams) 
 

Before explaining this idea through a few examples, we present the overall SPIS conceptual 
class diagram in Figure 6. It will help understand the examples. In the UML graph of the figure 



the arrows ended with a diamond represent the aggregation, or composition: the Simulation 
object on the right is composed of 1 Plasma object and 1 Spacecraft object, etc. The arrows 
ended with a triangle represent derivation or specialisation: a VolDistribution object can be either 
of a FluidDistribution version, a KineticPICDistribution or a GlobalDistribution. In the 1st case 
it will be composed of VolField objects (distribution moments), of 1 ParticleList object in the 2nd 
case, and simply a few global parameters in the 3rd case (not represented). The class names 
should be explicit enough for the reader to understand the chart. 
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Figure 6.  UML graph of SPIS conceptual class design. Each box is a class, the 2nd part of 

the box contains attributes (i.e. data), the 3rd part operations (i.e. methods). Diamond 
arrows indicate composition, triangle arrows indicate specialization (i.e. derivation). 

 
Figure 7 represents a top level design of the Volume Distribution class, and in particular how 

its polymorphism can be uncoupled from others. As already written above, the three derived 
classes are PIC Volume Distribution, Fluid Volume Distribution, and Global Volume 
Distribution of Boltzmann type, one per column (class names are sometimes abbreviated but 
should remain explicit enough). The Move and Get Moment methods must be implemented for 
each of the classes derived from Volume Distribution. The coding of these methods is necessarily 
different for each derived type, kinetic, fluid, or global. The good design introduced above, i.e. 
the uncoupling of polymorphisms, consists in making the implementation of these methods 
independent of the other polymorphisms, e.g. the mesh type, space dimensionality, E field 
storage, etc. The arrows on the left hand side show how it works on some examples: 

 
- The E.GetField(pl, E_Val) method of the E field object returns the electric field value at the 

particle list positions whatever the specialization of E is, either stored as a potential (usual in 
electrostatics) or as an actual vector field (more common in electromagnetism). The 



polymorphism of the vector field potential/vector is uncoupled from the volume distribution 
one, it is transparent when integrating particle trajectories. This was a very simple case. 

 
- The pl.vm.Advance(pl,dx) method is basically a computation of particle trajectories 

intersection with spacecraft and box boundaries. It is of course very dependant of the type of 
mesh (structured or unstructured…). But this is transparent for the particle method Move, 
which simply requires this computation from the generic Advance method of the volume 
mesh vm in which the particles are tracked, whatever the volume mesh type is. 

 
There is indeed many more polymorphisms to uncouple in this routine than actually 

emphasized by the arrows. Space dimension does not show in this routine whereas it might be 
omnipresent, if coded without care. This is true for the Advance method already discussed, since 
its actual implementation is dependant on the mesh type but of course also on space dimension. 
It is also the case for the trajectory integration, which is the core of that routine. It is crudely 
symbolized in this figure by ‘v = v + (E+vXB) dt; dx = v dt’, but the vectors (lists) x, v, etc. are 
dependant on space dimension. The relationship between x increment and v gets even more 
complex in case of non Cartesian geometry (e.g. axisymmetry). So, both the objects (x, v, etc.) 
and the operations between them must be invoked independently of their actual implementation 
(e.g. through a position_increment_from_velocity method here in Java (not represented in the 
figure), not by overloading the + operator as it could perhaps be done in C++ if sub-types are 
accurate enough). 



 

 
 

Figure 7.  Example of polymorphism: Volume Distribution 
 

Thanks to this uncoupling the Move method can perform its main job, i.e. particle trajectory 
integration†, independently of the sub-types of the other objects. In the simple example of Figure 
7, it is a basic first order scheme. If an improved scheme is to be implemented, as a leapfrog 
(magnetic force to be changed) or an higher order scheme, it can simply be done in the Move 
routine, independently of the mesh type, space dimension, E or B field storage, etc., which is 
very important to offer a good modularity. 

 
As a final illustration of polymorphism uncoupling, let us list how different objects, which 

might a priori depend on space dimension (and symmetries), were made as much as possible 
independent of space dimension (object in bold font could not escape an explicit dimension-
dependant implementation): 

 

                                                 
† Things are not as simple as in the simplified illustration of Figure 7, since for example the integration time step can 
depend on the mesh (CFL-type conditions), which forces to transmit such information from the mesh to the 
integration routine (simply as a global maximum time step, or better a particle-dependent time step for sub-cycling) 



• Volume or surface mesh: 
 

• Data structure: explicit implementation  
• Solvers: partially dimension-specific: e.g. Poisson equation matrix writing is dimension-

specific, whereas its solving is not 
 

• Vector table : explicit implementation, table of different dimension 
 
• Particle list: transparent, handled at vector table level 
 
• Volume or surface fields: transparent (a vector field in 3D is 3D table of 3 values): 
 

• stored in 1D tables (may be recast in 3D/2D tables for structured solvers, but this is 
handled at mesh/solver level) 

• Vector fields => handled at “vector table” level 
 

• Volume or surface distributions: transparent: 
 

• data: transparent, handled at particle list (PIC Distribution) or field level (Fluid 
Distribution) 

• Solvers, main example of Move() (cf. Figure 7):  
• if PIC transparent 
• if fluid => transferred to mesh solver. 

 
A last remark about object design has to do with efficiency. OO programming is very 

interesting to design modular codes, but there is a cost associated with each object, a memory 
cost and certainly more important a computation time cost. In order to avoid these costs to 
impact significantly the overall performance, no “small objects” were defined, i.e. individual 
particles or mesh cells were not defined as objects. As visible on the examples above, only “large 
objects” were implemented, i.e. particle lists or cell lists. This allowed to maintain the extra 
computation load due to object handling to a very reasonable amount. 

Conclusions 

A new software dedicated to spacecraft plasma interaction modeling was presented. Its major 
originality is its openness. It is collaboratively developed within SPINE community, an open 
community of scientists and engineers studying spacecraft plasma interactions. In that purpose, 
the code is released under an open source form (sources distributed under GPL license). The 
code framework based on modern techniques (Java, Jython, Swing) and on open source pre-
post/processing tools, and the object design of the solvers ensuring an efficient modularity were 
eventually presented. 

 
The free access to this code should allow an important spreading in science and technology 

teams, leading to an extensive testing and validation. The principle of open source collaborative 
development is to use the code, enhance it by adding extra modules, improving the existing ones, 



or simply testing them, and then let the community profit by these improvements as a return. As 
shown by the interest for the code in Europe and worldwide, this positive dynamics is likely to 
be significantly enhanced after SPIS full release in spring 2004. 
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