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Abstract 

 
Bulk charge accumulation in thin dielectric materials under electron beam irradiation in 

vacuum environment was observed using newly developed measurement system. Recently, 
some accidents in spacecraft due to the charging up of electric potential have been reported. 
Some of them are caused by surface discharge normally happens in plasma environment. 
Some others seem to be caused by discharge due to and an accumulation of charge in bulk of 
materials at relatively higher altitude environment. Surface charge is usually measured using 
surface potential meter. However, there had been no useful method to measure the bulk 
charge in the materials. Therefore, we have been developing the bulk charge measurement 
system. We have already succeeded in measuring the bulk charge distribution in thick sample 
under electron beam irradiation in air atmosphere. However, to simulate the actual spacecraft 
in condition of high altitude space environment, it is necessary to carry out the measurement 
for thin materials in vacuum environment. Therefore, we have developed an improved 
measurement system applicable to a thin sample in vacuum environment. Using the improved 
system, we carried out the measurement of bulk charge distributions in 180 and 50 µm thick 
Kapton® and PET film under electron beam irradiation in vacuum of ca 10-6 Pa. In this report, 
some typical measurement results are introduced following the explanation of brief 
measurement principle. 
 

Introduction 
 

The spacecraft flying in GEO is always exposed to plasma and/or radioactive-rays such as 
α−, β− and γ−rays. In such condition, dielectric materials like cover glasses of solar battery 
or thermal blankets are charged up. Especially in GEO, they are expected to be irradiated by 
high-energy electron beam. In the case of high-energy electron beam irradiation, the electrons 
are injected into the bulk of dielectric materials and they accumulate in them. Because there 
are no basic data based on practical experiments, it seems difficult to simulate the 
accumulation and relaxation process of injected charge in dielectric materials. In other words, 
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it is difficult to expect when and how an accident of ESD caused by accumulated charge will 
happen on spacecraft. Therefore, we need to measure the charge distribution in the bulk of 
dielectric materials. We have been developing a system for measuring such a charge 
distribution in dielectric materials using, so-called, PIPWP (Piezo-induced pressure wave 
propagation) method. 

 
Principle of PIPWP Method 

 
The principle of PIPWP method is shown in Figure 1. By applying a pulse electric field to 

the piezo-device, a pulsive pressure wave is generated. When the acoustic wave propagates 
through the charged sample, the position of charge shifts slightly. The movement of the 
charge induces the change of surface charge on the electrode. Therefore, the displacement 
current flows the external circuit due to the change of induced charge on the electrodes. Since 
the displacement current flows when the acoustic pulse passes through the charge layer, we 
can observe the charge distribution by measuring the external current. A detail of the 
principle is described elsewhere [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

backing 
material

PVDF

sample

HV 
(for calibration)

holder
Al 

electrode

Glass 

ppulse re-amplifier

sample 
holder

electron 
beam

Aluminum body 
(ground) Coupling 

capacitor

signal

evaporated 
electrode

window

e-beam

Al 
electrode 

backing 
material 

Piezo electric 
device 

Ni-Cr evaporated 
electrode 

evaporated 
electrode

Al
electrode

Ep(t) C 

ρ(z) 
σ(0) σ(d) P(t) 

R 
usa 

i(t) 

C
ha

rg
e 

D
en

si
ty

 ρ
(z

) [
C

/m
3 ]

Position z [µ m]
0 d

0

 
 Figure 1.  The principle of PIPWP 

method 
Figure 2.  Diagram of the measurement 

apparatus  
 
 

Measurement Apparatus 
 

  Diagram of the measurement apparatus is shown in Figure 2. [2] And Figure 3 shows 
Picture of the measurement apparatus. The apparatus have a window for the irradiation of the 
radioactive rays to the sample as shown in fig.2. The room for the sample should be 
completely shielded to reduce the noise from outside. Therefore the sample has an evaporated 
aluminum electrode on the topside surface, and it is connected tightly to the grounded flange 
of the window. To obtain the electric signal from the bottom side of the sample, a glass plate 
is inserted between the sample and the piezo-electric device. This glass plate is used to isolate 
the bottom side of the sample from the grounded level. As the aluminum electrode is 
evaporated on the bottom side of the glass plate for the shielding, the sample is completely 
covered by the grounded shield. The glass plate also has an evaporated electrode on the 
topside surface and it is connected to the detecting amplifier. 



To generate a pressure wave, a pulse voltage is applied to the piezo-devise. The resolution 
of the apparatus depends on thickness of piezo-devise and the pulse width. In the experiment 
for measurement of Kapton® with 180 µm thickness, the PVDF film with 9 µm thick and 
500ns width pulse were used as the piezo-devise and pulse voltage, respectively. To measure 
a thin film, we needed to improve the resolution of the measurement. Therefore, in the case 
of measurement for PET with 50 µm thickness, PVDF film with 4 µm thick and 1ns width 
pulse were used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Picture of the measurement 
apparatus  

 Figure 4.  Picture of SIRENE 
 
 
 
 

Vmax: -100kV I V 

10-5Pa 

anode 

cathode If 

variable 
resistor 

6V 

R=20MΩ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.  Picture and diagram of the small test chamber 
 
 

Electron Beam Irradiation System 
 

In this experiment, two types of electron beam chambers were used. One is a named 
SIRENE in ONERA (Office National d'Etudes et de Recherches Aerospatiales), shown in Fig. 
4. The range of acceleration energy and flux of electron beam in SIRENE are 10-400 kV and 
0-2 nA, respectively. Another is small test chamber, shown in Figure 5, with dc high voltage 
generator up to 100 keV. 
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ron beam irradiated Kapton® of 180 µm thick 
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The peak of the negative charge is located around 120 µm from the irradiation surface 
described in right side in the figure. After irradiation, it is found that almost no changes are 
observed in this time range. Figures 8 and 9 show the electric field distributions that are 
obtained by integral calculation from the charge distributions shown in Figs. 6 and 7. As 
shown in Fig. 8, during e-beam irradiation, the electric field gradually increases with increase 
of the negative charge distribution. On the other hand, the electric field is stable after the 
irradiation as shown in Fig. 9. These results show the accumulated negative charge in 
Kapton® film may remains in the bulk for long time. Figure 10 shows the change of total 
amount of accumulated charge in Kapton® film under and after irradiation. The total amount 
of charge rapidly increases immediately after beginning of the irradiation.  However, the 
change of it becomes stable soon and seems to be saturated. After irradiation, the amount of 
charge seems to keep the maximum value 
 
Electron beam irradiated PET of 50 µm thick 
 

  Figures 11 and 12 show the changes of charge distribution in 50 µm thick PET film under 
and after electron beam irradiation with acceleration energy of 40 keV in vacuum. This 
experiment was carried out using small test chamber. As shown in Fig. 11, the negative 
charge gradually increases with increase of the irradiation time. In these results, the 
distributions of every 1 minute are described. It is clear that the injected electrons increases 
rapidly near the opposite electrode as shown in Fig. 11. The peak of the negative charge is 
located around 41 µm from the irradiation surface described in right side in the figure. After 
irradiation, it is found that the charge distribution gradually decreases as shown in Fig. 12. 
Figures 13 and 14 show the electric field distributions calculated using the space charge 
distributions shown in Figs. 11 and 12. As shown in Fig. 13, during e-beam irradiation, the 
electric field gradually increases with increase of the negative charge distribution. The 
maximum electric field finally becomes 100 kV/mm. After irradiation, the electric field 
distribution gradually decreases. Figure 15 shows the change of total amount of charge 
accumulated in PET film under and after irradiation. It is found that the total amount of 
charge gradually increases in irradiation process.  After irradiation, however, it quickly 
decreases in this time range. 
 

  Since it is difficult to compare the results obtained from different samples, we do not 
mention the physical meaning of the results. However, it is clear that the developed 
measurement system seems to be useful for analysis of interaction between electron beam 
and dielectric materials. 
 

Conclusion 
 

We develop a measurement system of charge distribution in dielectric materials during 
electron beam irradiation in vacuum atmosphere. Using this system, we observed the change 
of charge distributions in Kapton® and PET films under and after electron beam irradiation. 
The developed measurement system seems to be useful for analysis of interaction between 
electron beam and dielectric materials. 
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Figure 11 The Charge Density (under 
irradiation) 

Figure 12 The Charge Density (after 
irradiation) 
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Fig  Figure 14 The Electric Field (after irradiation)  
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