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Abstract 
 

The purpose of the current experiment is to make direct comparisons between the arcing 
results obtained from the diffusion pumped vertical chamber and our newly renovated Teney 
vacuum chamber which is equipped with a cryogenic pump. Recall that the prior reported results 
obtained for the Vertical chamber were nominal at best, showing only a slight reduction in the 
arc rate after 5 heating cycles at the lower bias potentials and virtually no changes at high 
potential biases.1, 2 It was concluded that the vertical chamber was unable to remove enough 
water vapor from the chamber to adequately test the arcing criterion. Because the cryo-pumped 
Teney chamber has a ten times better pumping speed, (40,000 liters per sec compared to 4,000 
liters per sec for the diffusion pumped vertical chamber), a decision was made to retest that 
experiment in both the Teney and Vertical vacuum chambers. A comparison of the various data 
is presented with encouraging results.  
 

Introduction 
 

For the current experiments silicon photovoltaic arrays are placed under simulated daytime 
solar heating (full sunlight) conditions typically encountered in a Low Earth Orbit (LEO) 
environment. Assuming a 220 km LEO orbit the array will reach a temperature of about 80oC in 
full sunlight. It is our contention that a desorbed molecular ionization mechanism involving 
water vapor, at the triple junction sites on a solar array, is directly responsible for arcing onset of 
solar arrays in LEO.3-10 The solar array arcing criterion is used to validate our hypothesis that the 
arc rate depends on the water vapor content stored in the array. Because solar heating of the array 
seeks to drive out absorbed water vapor, a reduction in water vapor should lead to a reduction in 
the arcing rare. Arc rates are established for individual arrays held at 11°C and are used as a 
baseline for further comparisons. As in the previous experiment the arrays were heated to a 
temperature of 80oC. Each thermal cycle was set to time duration of 40 minutes to approximate 
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the daytime solar heat flux to the array over a single orbit. The arrays are allowed to cool back 
down to ambient temperature before proceeding to the next thermal cycle. After 5 complete 
heating cycles the arc rates of the solar arrays are then retested at a temperature of 11oC. 

 
Experimental Setup 

 
Figure 1 shows a picture of the 2.2 meter (diameter) by 3.0 meter (length) Vertical Chamber 

(Left) and the 1.8 meter (diameter) by 2.0 meter (length) of the cryo-pumped Teney vacuum 
chamber (Right). Figure 2 shows two solar arrays hanging in front of an aluminum plate 
equipped with resistive heating elements which are used to simulate the solar heat flux to the 
array. Two type T thermocouples were used to monitor the array and heater plate 
 temperatures. Arrays samples 62 and 63 are each composed of thirty-six 4 by 6 centimeter 
silicon solar cells arranged as 3 parallel strings, each string being composed of 12 cells wired in 
series. At experiment startup the base neutral background pressure (Po) in the chamber at 14oC 
was recorded at Po = 5.7x10-7 Torr. A Kaufman plasma source was used to ionize xenon gas 
neutrals via a hot wire filament for the experiments. In principle xenon gas is carefully metered 
into the chamber using a user controlled leak valve and an ionization gauge was used to read 
back the tank pressure. With the xenon gas flowing through the source (source not energized) a 
tank neutral pressure, Po = 4x10-5 Torr was established. Initially a programmable power supply 
source/measure unit (electrometer) is used to monitor electron flux to a Langmuir probe (Lp) 
which is mounted near the face of the array.  A bias of +30V is applied to the Lp relative to tank 
ground and the current flowing to the surface of the probe is carefully monitored. Next the 
filament current in the plasma source is gradually increased until the electrometer reads +0.4 
milliamps indicating ionization of xenon gas neutrals is occurring and that a plasma is present. 
The Langmuir probe is swept in voltage to obtain the plasma parameters and the filament current 
to the plasma source is further adjusted until the Lp diagnostic parameters match the ionospheric 
conditions for the specified orbit. The plasma electron number densities and electron 
temperatures measured for the current tests were: Ne=4.0x10-5cm-3 and Te = 0.89eV, about 
the same values used the previous arcing tests in the vertical chambers. 
 

For the arcing tests the three strings in each array are shorted and biased negative through a 
10k ohm resistor to the a power supply and back to ground through a 1µF capacitor wired in 
parallel (See Figure 3). A current probe amplifier, current and voltage probes, a four channel 400 
MHz digital storage oscilloscope, data acquisition and control software were used to record the 
arcs. Other miscellaneous equipment used in the tests included a quadruple mass spectrometer to 
record the levels of partial pressure for water vapor and other species in the vacuum system. 

 
Arc Test Results 

 
A plot of the partial pressure of water in the Vertical chamber, after three forty minute 

thermal cycles, is plotted in Figure 1. The minimum partial pressure for water in the Vertical 
tank after three hundred hours pumping levels out at approximately 2 microTorr.2 Therefore it 
was not necessary to proceed beyond 3 heating cycles for the vertical chamber tests. For 
comparison purposes note the over all level of reduction in the partial pressure of water is about 
20 times less for the Teney vacuum chamber (after five complete thermal cycles) than is case for 
the Vertical chamber after three thermal cycles (see figures (4.a) and (4.b)). 



Table A depicts in tabular form the arcing results obtained for the diffusion pumped vertical 
chamber and the cryo-pumped Teney vacuum chamber. Figures (5.a) & (5.b) graphically depict 
the arcing threshold potential (or arc inception voltage) obtained before heating and after thermal 
cycling for sample 63 (the 300 micron thick cover slide array) tested in the Vertical and Teney 
vacuum chambers. Similarly figures (5.c) & (5.d) plot the arcing threshold potential before and 
after thermal cycling obtained for sample 62 (the 150 micron thick cover slide array).  Note that 
the arc inception voltages plotted for the Vertical and Teney vacuum chamber tests of array 
samples 62 and 63 (Figure’s (5.a), (5.b) and (5.c),(5.d)) show that the arc inception voltage after 
heating is much more negative than is the case for the same samples before the arrays were 
heated. 
 

 
 

Conclusion 
 

The results from the thermal cycling tests appear to validate the arcing criterion that was 
forwarded earlier. The arcing criterion contends that the arc rate should drop as water is out 
gassed from the array due to heating. More importantly the arc inception voltage seems to be a 
better prognosticator in determining the effectiveness of thermal cycling on the out gassing of 
water from the array. In all cases the negative bias potentials recorded for initial arc inception 
voltage have been driven a great deal more negative after heating compared to the arc inception 
values recorded earlier before the arrays were heated. Furthermore the trend of lowering arc 
inception voltages after thermal cycling was observed in both the Vertical and Teney vacuum 
chamber tests. 
 

As a result of the current measurements the amount of water in the chamber needs to be at or 
below the 1.6 microTorr minimum level after heating for the observed changes in the arc 
inception voltage to be seen. The observation of the required 1.6 microTorr level has caused us 
to rescind our earlier conclusion that the Vertical chamber was unable to remove enough water 
vapor to adequately test the arcing criterion. A careful reexamination of the data has revealed 
that the original thermal cycling tests were run in an inconsistent manner with changing plasma 
source and density parameters.1, 2 The current tests were retested in the Vertical chamber with the 
same plasma source parameters, density and pressure set in the original thermal cycling tests of 



samples 62 and 63 run in the Teney vacuum chamber. Finally we believe we have demonstrated 
the effectiveness of the thermal cycling technique to passively outgas water from a solar array in 
an attempt to stave off arcing in LEO. 
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